cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A004016 Theta series of planar hexagonal lattice A_2.

Original entry on oeis.org

1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0, 6, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 6, 18, 0, 0, 12, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 12, 0, 0, 12, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
a(n) is the number of integer solutions to x^2 + x*y + y^2 = n (or equivalently x^2 - x*y + y^2 = n). - Michael Somos, Sep 20 2004
a(n) is the number of integer solutions to x^2 + y^2 + z^2 = 2*n where x + y + z = 0. - Michael Somos, Mar 12 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (the present sequence), b(q) (A005928), c(q) (A005882).
a(n) = 6*A002324(n) if n>0, and A002324 is multiplicative, thus a(1)*a(m*n) = a(n)*a(m) if n>0, m>0 are relatively prime. - Michael Somos, Mar 17 2019
The first occurrence of a(n)= 6, 12, 18, 24, ... (multiples of 6) is at n= 1, 7, 49, 91, 2401, 637, 117649, ... (see A002324). - R. J. Mathar, Sep 21 2024

Examples

			G.f. = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 + 12*x^13 + 6*x^16 + ...
Theta series of A_2 on the standard scale in which the minimal norm is 2:
1 + 6*q^2 + 6*q^6 + 6*q^8 + 12*q^14 + 6*q^18 + 6*q^24 + 12*q^26 + 6*q^32 + 12*q^38 + 12*q^42 + 6*q^50 + 6*q^54 + 12*q^56 + 12*q^62 + 6*q^72 + 12*q^74 + 12*q^78 + 12*q^86 + 6*q^96 + 18*q^98 + 12*q^104 + 12*q^114 + 12*q^122 + 12*q^126 + 6*q^128 + 12*q^134 + 12*q^146 + 6*q^150 + 12*q^152 + 12*q^158 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 171, Entry 28.
  • Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Ex. 18.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A035019.
Cf. A000007, A000122, A004015, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_3, A_4, ...), A186706.

Programs

  • Magma
    Basis( ModularForms( Gamma1(3), 1), 81) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    L := Lattice("A",2); A := ThetaSeries(L, 161); A; /* Michael Somos, Nov 13 2014 */
    
  • Maple
    A004016 := proc(n)
        local a,j ;
        a := A033716(n) ;
        for j from 0 to n/3 do
            a := a+A089800(n-1-3*j)*A089800(j) ;
        end do:
        a;
    end proc:
    seq(A004016(n),n=0..49) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0 ], 6 DivisorSum[ n, KroneckerSymbol[ #, 3] &]]; (* Michael Somos, Nov 08 2011 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := Length @ FindInstance[ x^2 + x y + y^2 == n, {x, y}, Integers, 10^9]; (* Michael Somos, Sep 14 2015 *)
    terms = 81; f[q_] = LatticeData["A2", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p%3==1, e+1, 1-e%2)))}; /* Michael Somos, May 20 2005 */ /* Editor's note: this is the most efficient program */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1,n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; /* Michael Somos, Oct 06 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, kronecker( d, 3)))}; /* Michael Somos, Mar 16 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, (d%3==1) - (d%3==2)))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=3; A = x * O(x^n); polcoeff( (eta(x + A)^3  + 3 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, qfrep([ 2, 1; 1, 2], n, 1)[n] * 2)}; /* Michael Somos, Jul 16 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1, n, x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)), x * O(x^n)), n))} /* Paul D. Hanna, Jul 03 2011 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A004016(n): return 6*prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    ModularForms( Gamma1(3), 1, prec=81).0 ; # Michael Somos, Jun 04 2013
    

Formula

Expansion of a(q) in powers of q where a(q) is the first cubic AGM theta function.
Expansion of theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) in powers of q.
Expansion of phi(x) * phi(x^3) + 4 * x * psi(x^2) * psi(x^6) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^3 + theta_4(z, q)^3 dz in powers of q^2. - Michael Somos, Jan 01 2012
Expansion of coefficient of x^0 in f(x * q, q / x)^3 in powers of q^2 where f(,) is Ramanujan's general theta function. - Michael Somos, Jan 01 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 - 2*u*w + 4*w^2. - Michael Somos, Jun 11 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1-u3) * (u3-u6) - (u2-u6)^2. - Michael Somos, May 20 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies A(x) + A(-x) = 2 * A(x^4), from Ramanujan.
G.f.: 1 + 6 * Sum_{k>0} x^k / (1 + x^k + x^(2*k)). - Michael Somos, Oct 06 2003
G.f.: Sum_( q^(n^2+n*m+m^2) ) where the sum (for n and m) extends over the integers. - Joerg Arndt, Jul 20 2011
G.f.: theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) = (eta(q^(1/3))^3 + 3 * eta(q^3)^3) / eta(q).
G.f.: 1 + 6*Sum_{n>=1} x^(3*n-2)/(1-x^(3*n-2)) - x^(3*n-1)/(1-x^(3*n-1)). - Paul D. Hanna, Jul 03 2011
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = 6 * A033687(n). - Michael Somos, Jul 16 2005
a(2*n + 1) = 6 * A033762(n), a(4*n + 2) = 0, a(4*n) = a(n), a(4*n + 1) = 6 * A112604(n), a(4*n + 3) = 6 * A112595(n). - Michael Somos, May 17 2013
a(n) = 6 * A002324(n) if n>0. a(n) = A005928(3*n).
Euler transform of A192733. - Michael Somos, Mar 12 2012
a(n) = (-1)^n * A180318(n). - Michael Somos, Sep 14 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Oct 15 2022

A073005 Decimal expansion of Gamma(1/3).

Original entry on oeis.org

2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
		

References

  • H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[1/3], 110]][[1]]
  • PARI
    default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
Equals (2^(1/3)*Pi*C*3^(1/2))^(1/3), where C = A118292 = Integral {0..1} 2/sqrt(1-x^3) is the transcendental butterfly constant. - Jan Lügering, Feb 08 2025

A073006 Decimal expansion of Gamma(2/3).

Original entry on oeis.org

1, 3, 5, 4, 1, 1, 7, 9, 3, 9, 4, 2, 6, 4, 0, 0, 4, 1, 6, 9, 4, 5, 2, 8, 8, 0, 2, 8, 1, 5, 4, 5, 1, 3, 7, 8, 5, 5, 1, 9, 3, 2, 7, 2, 6, 6, 0, 5, 6, 7, 9, 3, 6, 9, 8, 3, 9, 4, 0, 2, 2, 4, 6, 7, 9, 6, 3, 7, 8, 2, 9, 6, 5, 4, 0, 1, 7, 4, 2, 5, 4, 1, 6, 7, 5, 8, 3, 4, 1, 4, 7, 9, 5, 2, 9, 7, 2, 9, 1, 1, 1, 0, 6, 4, 3
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

This constant is transcendental: Chudnovsky famously proved that Gamma(1/3) is algebraically independent of Pi, but Gamma(1/3)*Gamma(2/3) = 2*Pi/sqrt(3) by the reflection formula. - Charles R Greathouse IV, Aug 21 2023

Examples

			1.354117939426400416945288028154513785519327266056793698394022467963782...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Cf. A030652 (continued fraction). - Harry J. Smith, May 14 2009

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(2/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[2/3], 110]][[1]]
  • PARI
    allocatemem(932245000); default(realprecision, 5080); x=gamma(2/3); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b073006.txt", n, " ", d));  \\ Harry J. Smith, May 14 2009
    

Formula

Gamma(2/3) * A073005 = A186706. - R. J. Mathar, Jun 18 2006

A248897 Decimal expansion of Sum_{i >= 0} (i!)^2/(2*i+1)!.

Original entry on oeis.org

1, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0, 8
Offset: 1

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Comments

Value of the Borwein-Borwein function I_3(a,b) for a = b = 1. - Stanislav Sykora, Apr 16 2015
The area of a circle circumscribing a unit-area regular hexagon. - Amiram Eldar, Nov 05 2020

Examples

			1.2091995761561452337293855050947704881893774987284937170465899569254...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), pp. 120-121.
  • L. B. W. Jolley, Summation of Series, Dover (1961), No. 261, pp. 48, 49, (and No. 275).

Crossrefs

Cf. A091682 (Sum_{i >= 0} (i!)^2/(2*i)!).

Programs

  • Mathematica
    RealDigits[2 Sqrt[3] Pi/9, 10, 100][[1]]
  • PARI
    a = 2*Pi/(3*sqrt(3)) \\ Stanislav Sykora, Apr 16 2015

Formula

Equals 2*sqrt(3)*Pi/9 = 1 + 1/6 + 1/30 + 1/140 + 1/630 + 1/2772 + 1/12012 + ...
Equals m*I_3(m,m) = m*Integral_{x>=0} (x/(m^3+x^3)), for any m>0. - Stanislav Sykora, Apr 16 2015
Equals Integral_{x>=0} (1/(1+x^3)) dx. - Robert FERREOL, Dec 23 2016
From Peter Bala, Oct 27 2019: (Start)
Equals 3/4*Sum_{n >= 0} (n+1)!*(n+2)!/(2*n+3)!.
Equals Sum_{n >= 1} 3^(n-1)/(n*binomial(2*n,n)).
Equals 2*Sum_{n >= 1} 1/(n*binomial(2*n,n)). See Boros and Moll, pp. 120-121.
Equals Integral_{x = 0..1} 1/(1 - x^3)^(1/3) dx = Sum_{n >= 0} (-1)^n*binomial(-1/3,n) /(3*n + 1).
Equals 2*Sum_{n >= 1} 1/((3*n-1)*(3*n-2)) = 2*(1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...) (added Oct 30 2019). (End)
Equals Product_{k>=1} 9*k^2/(9*k^2 - 1). - Amiram Eldar, Aug 04 2020
From Peter Bala, Dec 13 2021: (Start)
Equals (2/3)*A093602.
Conjecture: for k >= 0, 2*sqrt(3)*Pi/9 = (3/2)^k * k!*Sum_{n = -oo..oo} (-1)^n/ Product_{j = 0..k} (3*n + 3*j + 1). (End)
Equals (3/4)*S - 1, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..Pi/2} tan(x)^(1/3)/(sin(2*x) + 1) dx. See MIT Link. - Joost de Winter, Aug 26 2023
Continued fraction: 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). See A000407. - Peter Bala, Feb 20 2024
Equals Sum_{n>=2} 1/binomial(n, floor(n/2)); and trivially if "floor" is replaced by "ceiling". - Richard R. Forberg, Aug 30 2024
Equals Product_{k>=2} (1 + (-1)^k/A001651(k)). - Amiram Eldar, Nov 22 2024
Equals 2*A073010 = 1/A086089 = sqrt(A214549) = exp(A256923) = A275486/2. - Hugo Pfoertner, Nov 22 2024
Equals 1 - (1/6) * Sum_{n>=1} A010815(n)/n. - Friedjof Tellkamp, Apr 05 2025
Equals A248181 - 2. - Pontus von Brömssen, Apr 05 2025

A247719 Decimal expansion of Integral_{t=0..Pi/2} sqrt(tan(t)) dt.

Original entry on oeis.org

2, 2, 2, 1, 4, 4, 1, 4, 6, 9, 0, 7, 9, 1, 8, 3, 1, 2, 3, 5, 0, 7, 9, 4, 0, 4, 9, 5, 0, 3, 0, 3, 4, 6, 8, 4, 9, 3, 0, 7, 3, 1, 0, 8, 4, 4, 6, 8, 7, 8, 4, 5, 1, 1, 1, 5, 4, 2, 6, 9, 7, 8, 0, 3, 4, 7, 8, 2, 1, 7, 3, 9, 6, 5, 4, 9, 7, 3, 6, 9, 5, 5, 2, 8, 7, 6, 6, 3, 4, 6, 7, 3, 8, 2, 3, 8, 2, 6, 1, 8, 6, 8, 1, 7
Offset: 1

Views

Author

Jean-François Alcover, Sep 23 2014

Keywords

Examples

			2.22144146907918312350794049503034684930731...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(2); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[Pi/Sqrt[2], 10, 104] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(2) \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals Pi/sqrt(2).
Equals A063448/2.
c = 2*( Sum_{k >= 0} (-1)^k/(4*k + 1) + Sum_{k >= 0} (-1)^k/(4*k + 3) ) = 2*(A181048 + A181049). - Peter Bala, Sep 21 2016
From Amiram Eldar, Aug 07 2020: (Start)
Equals Integral_{x=0..Pi} 1/(cos(x)^2 + 1) dx = Integral_{x=0..Pi} 1/(sin(x)^2 + 1) dx.
Equals Integral_{x=-oo..oo} 1/(x^4 + 1) dx.
Equals Integral_{x=-oo..oo} x^2/(x^4 + 1) dx.
Equals Integral_{x=0..oo} log(1 + 1/(2 * x^2)) dx. (End)
Equals Integral_{x=0..2*Pi} 1/(3 + sin(x)) dx; since for a>1: Integral_{x=0..2*Pi} 1/(a + sin(x)) dx = 2*Pi/sqrt(a^2-1). - Bernard Schott, Feb 19 2023
Equals 20/9 - 160*Sum_{n >= 1} 1/((64*n^2 - 1)*(64*n^2 - 4)*(64*n^2 - 9)). - Peter Bala, Nov 09 2023

A053458 Open disk numbers (version 3): a(n) is the number of points (i+j/2,j*sqrt(3)/2), i,j integers (triangular grid) contained in an open disk of diameter n, centered at (0,0).

Original entry on oeis.org

0, 1, 1, 7, 13, 19, 31, 43, 55, 73, 85, 109, 121, 151, 169, 199, 235, 253, 295, 313, 361, 397, 433, 475, 511, 571, 595, 661, 703, 757, 817, 859, 925, 979, 1039, 1111, 1159, 1237, 1285, 1381, 1453, 1519, 1597, 1663, 1759, 1813, 1915, 1993, 2077, 2173, 2257
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 13 2000

Keywords

Comments

a(n)/(n/2)^2 --> Pi*2/sqrt(3) (see A186706).

Crossrefs

Cf. A053416 (closed disk), A053456, A053457, A053459.
Cf. A186706.

Programs

  • Maple
    A053458 := proc(d)
        local a,j,imin,imax ;
        a := 0 ;
        for j from -floor(d/sqrt(3)) do
            if j^2*3 >= d^2 and j>= 0 then
                break ;
            end if;
            imin := (-j-sqrt(d^2-3*j^2))/2 ;
            if type(imin,integer) then
                imin := imin+1 ;
            else
                imin := ceil(imin) ;
            end if;
            imax := (-j+sqrt(d^2-3*j^2))/2 ;
            if type(imax,integer) then
                imax := imax -1 ;
            else
                imax := floor(imax) ;
            end if;
            a := a+imax-imin+1 ;
        end do:
        a ;
    end proc:
    seq(A053458(d),d=0..30) ; # R. J. Mathar, Nov 22 2022
  • Mathematica
    a[n_] := Sum[Boole[4*(i^2 + i*j + j^2) < n^2], {i, -n, n}, {j, -n, n}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 05 2023 *)

A244339 Expansion of (-2 * a(q) + 3*a(q^2) + 2*a(q^4)) / 3 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -4, 6, -4, 0, 0, 6, -8, 6, -4, 0, 0, 0, -8, 12, 0, 0, 0, 6, -8, 0, -8, 0, 0, 6, -4, 12, -4, 0, 0, 0, -8, 6, 0, 0, 0, 0, -8, 12, -8, 0, 0, 12, -8, 0, 0, 0, 0, 0, -12, 6, 0, 0, 0, 6, 0, 12, -8, 0, 0, 0, -8, 12, -8, 0, 0, 0, -8, 0, 0, 0, 0, 6, -8, 12, -4, 0
Offset: 0

Views

Author

Michael Somos, Jun 26 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 4*q + 6*q^2 - 4*q^3 + 6*q^6 - 8*q^7 + 6*q^8 - 4*q^9 - 8*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 Sum[ (-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^4 QPochhammer[ q^4] QPochhammer[ q^6]^8 / (QPochhammer[ q^2]^4 QPochhammer[ q^3]^4 QPochhammer[ q^12]^3), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A) * eta(x^6 + A)^8 / (eta(x^2 + A)^4 * eta(x^3 + A)^4 * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, n, x^k / (1 + x^k) * [0, -2, 1, 0, -1, 2][k%6 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, n, x^k / (1 + x^k + x^(2*k)) * [3, -2, 1, -2][k%4 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A);  if( n<1, n==0, A = factor(n); -4 * prod( j=1, matsize(A)[1], if( p = A[j,1], e = A[j,2]; if( p==2, (1 - (-1)^e) * -3/4, if( p==3, 1, if( p%6 == 1, e+1, (1 + (-1)^e) / 2))))))};

Formula

Expansion of b(q) * (b(q) + 2*b(q^4)) / (3 * b(q^2)) in powers of q where b() is a cubic AGM theta function.
Expansion of psi(-q) * chi(-q)^3 * phi(q^3) * chi(q^3)^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q)^4 * eta(q^4) * eta(q^6)^8 / (eta(q^2)^4 * eta(q^3)^4 * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [ -4, 0, 0, -1, -4, -4, -4, -1, 0, 0, -4, -2, ...].
Moebius transform is period 12 sequence [ -4, 10, 0, -6, 4, 0, -4, 6, 0, -10, 4, 0, ...].
a(n) = -4 * b(n) where b(n) is multiplicative with b(2^e) = (1 - (-1)^e) * -3/4 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6) with a(0) = 1.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A244375.
a(2*n) = A004016(n). a(2*n + 1) = -4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = -4 * A097195(n). a(6*n + 5) = 0.
Sum_{k=1..n} abs(a(k)) ~ (2*Pi/sqrt(3)) * n. - Amiram Eldar, Jun 08 2025

A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).

Original entry on oeis.org

3, 2, 3, 9, 3, 7, 1, 3, 4, 0, 7, 1, 6, 9, 7, 3, 2, 0, 6, 1, 8, 0, 0, 6, 6, 0, 1, 1, 6, 3, 0, 7, 9, 4, 8, 9, 8, 0, 1, 2, 1, 3, 7, 8, 2, 4, 5, 5, 4, 5, 1, 2, 5, 1, 0, 9, 1, 4, 4, 2, 6, 6, 9, 4, 0, 0, 1, 7, 7, 7, 1, 2, 5, 6, 9, 6, 7, 7, 0, 0, 6, 5, 8, 8, 3, 9, 0, 1, 1, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 09 2024

Keywords

Examples

			3.23937134071697320618006601163079489801213782...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]

Formula

Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).

A376911 Decimal expansion of Product_{k=1..5} Gamma(k/3).

Original entry on oeis.org

2, 9, 2, 4, 3, 2, 7, 2, 2, 9, 9, 5, 2, 4, 0, 2, 5, 5, 3, 7, 2, 8, 7, 3, 8, 0, 7, 4, 0, 3, 7, 3, 7, 8, 1, 1, 4, 1, 6, 7, 0, 2, 2, 0, 4, 6, 5, 8, 9, 8, 6, 3, 8, 8, 9, 3, 0, 7, 6, 5, 9, 0, 7, 4, 4, 3, 5, 5, 6, 8, 8, 3, 6, 2, 7, 2, 3, 5, 7, 1, 0, 9, 0, 3, 7, 5, 6, 2, 4, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			2.9243272299524025537287380740373781141670220...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[8/27*Pi^2, 10, 100]]

Formula

Equals Product_{k=1..6} Gamma(k/3) = (8/27)*Pi^2 = (8/27)*A002388 (cf. eqs. 87 and 88 in Weisstein link).
Equals 2*A214549. - Hugo Pfoertner, Oct 11 2024

A376912 Decimal expansion of Product_{k=1..7} Gamma(k/3).

Original entry on oeis.org

3, 4, 8, 1, 8, 1, 9, 0, 6, 8, 6, 2, 8, 7, 3, 5, 9, 3, 9, 5, 9, 8, 9, 5, 2, 0, 6, 2, 9, 2, 2, 7, 4, 2, 2, 8, 8, 0, 0, 7, 3, 3, 6, 8, 0, 9, 8, 1, 9, 7, 4, 7, 2, 6, 8, 7, 7, 5, 6, 3, 6, 2, 8, 9, 2, 7, 9, 4, 8, 9, 3, 0, 6, 8, 3, 9, 9, 4, 6, 5, 2, 6, 8, 2, 8, 0, 4, 8, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			3.4818190686287359395989520629227422880073368098...
		

Crossrefs

Cf. A002388.
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[32/243*Pi^2*Gamma[1/3], 10, 100]]

Formula

Equals (32/243)*Pi^2*Gamma(1/3) = (32/243)*A002388*A073005 (cf. eq. 89 in Weisstein link).
Showing 1-10 of 18 results. Next