cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A257096 Decimal expansion of I3(u,v) = A248897/AG3(u,v) for u=1, v=2.

Original entry on oeis.org

7, 2, 4, 2, 3, 5, 6, 3, 3, 8, 0, 0, 9, 7, 1, 4, 2, 9, 5, 3, 8, 9, 2, 3, 3, 3, 1, 1, 1, 1, 5, 0, 1, 8, 3, 8, 3, 3, 0, 9, 7, 6, 3, 4, 4, 6, 8, 3, 2, 9, 5, 5, 3, 0, 4, 9, 8, 9, 2, 4, 7, 6, 0, 7, 2, 5, 1, 1, 4, 3, 5, 6, 4, 7, 3, 6, 3, 5, 5, 8, 5, 5, 2, 3, 5, 8, 4, 6, 2, 2, 3, 9, 6, 1, 3, 9, 4, 0, 3, 8, 9, 3, 8, 5, 4
Offset: 0

Views

Author

Stanislav Sykora, Apr 16 2015

Keywords

Comments

For positive u and v, AG3(u,v) is defined as the common limit of u_k, v_k such that u_0=u, v_0=v, u_(k+1)=(u_k+2*v_k)/3, v_(k+1)=(v_k*(u_k*u_k+u_k*v_k+v_k*v_k)/3)^(1/3). Since the iterative algorithm is similar to that for AGM, AG3 is sometimes referred to as "cubic AGM".
An alternative definition of I3(u,v) is by means of the definite integral I3(u,v) = Integral[x=0,inf](x/((u^3+x^3)*(v^3+x^3)^2)^(1/3)).

Examples

			0.724235633800971429538923331111501838330976344683295530...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ NIntegrate[(x/((1 + x^3) (8 + x^3)^2)^(1/3)), {x, 0, Infinity}, AccuracyGoal -> 111, WorkingPrecision -> 111]][[1]] (* Robert G. Wilson v, Apr 16 2015 *)
  • PARI
    I3(u,v)={my(an=u+0.0,bn=v+0.0,anext=0.0,ncyc=0,
      eps=2*10^(-default(realprecision)));
      while(1, anext=(an+2*bn)/3;
        bn=(bn*(an*an+an*bn+bn*bn)/3)^(1/3); an=anext;
        ncyc++; if((ncyc>3)&&(abs(an-bn)
    				

Formula

Equals Integral[x=0,inf](x/((1+x^3)*(8+x^3)^2)^(1/3)).

A257097 Decimal expansion of I3(u,v) = A248897/AG3(u,v) for u=2, v=1.

Original entry on oeis.org

9, 1, 0, 0, 7, 6, 2, 7, 2, 8, 9, 6, 6, 4, 4, 9, 9, 4, 5, 9, 3, 5, 6, 4, 3, 3, 4, 7, 1, 4, 6, 3, 0, 2, 0, 7, 5, 4, 2, 2, 9, 2, 7, 9, 7, 5, 4, 1, 4, 8, 8, 0, 8, 1, 3, 6, 5, 2, 5, 9, 0, 4, 5, 9, 6, 5, 8, 1, 4, 1, 1, 1, 3, 2, 3, 7, 4, 6, 6, 2, 8, 2, 4, 3, 5, 9, 8, 0, 0, 8, 5, 1, 7, 9, 5, 2, 2, 1, 2, 8, 1, 6, 3, 7, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 16 2015

Keywords

Comments

For positive u and v, AG3(u,v) is defined as the common limit of u_k, v_k such that u_0=u, v_0=v, u_(k+1)=(u_k+2*v_k)/3, v_(k+1)=(v_k*(u_k*u_k+u_k*v_k+v_k*v_k)/3)^(1/3). Since the iterative algorithm is similar to that for AGM, AG3 is sometimes referred to as "cubic AGM".
An alternative definition of I3(u,v) is by means of the definite integral I3(u,v) = Integral[x=0,inf](x/((u^3+x^3)*(v^3+x^3)^2)^(1/3)).

Examples

			0.9100762728966449945935643347146302075422927975414880813652590...
		

Crossrefs

Programs

  • PARI
    I3(u,v)={my(an=u+0.0,bn=v+0.0,anext=0.0,ncyc=0,
      eps=2*10^(-default(realprecision)));
      while(1, anext=(an+2*bn)/3;
        bn=(bn*(an*an+an*bn+bn*bn)/3)^(1/3); an=anext;
        ncyc++; if((ncyc>3)&&(abs(an-bn)
    				

Formula

Equals Integral[x=0,inf](x/((8+x^3)*(1+x^3)^2)^(1/3)).

A001651 Numbers not divisible by 3.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104
Offset: 1

Views

Author

Keywords

Comments

Inverse binomial transform of A084858. - Benoit Cloitre, Jun 12 2003
Earliest monotonic sequence starting with (1,2) and satisfying the condition: "a(n)+a(n-1) is not in the sequence." - Benoit Cloitre, Mar 25 2004. [The numbers of the form a(n)+a(n-1) form precisely the complement with respect to the positive integers. - David W. Wilson, Feb 18 2012]
a(1) = 1; a(n) is least number which is relatively prime to the sum of all the previous terms. - Amarnath Murthy, Jun 18 2001
For n > 3, numbers having 3 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
Also numbers n such that (n+1)*(n+2)/6 = A000292(n)/n is an integer. - Ctibor O. Zizka, Oct 15 2010
Notice the property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 3). - Bruno Berselli, Nov 17 2010
A001651 mod 9 gives A141425. - Paul Curtz, Dec 31 2010. (Correct for the modified offset 1. - M. F. Hasler, Apr 07 2015)
The set of natural numbers (1, 2, 3, ...), sequence A000027; represents the numbers of ordered compositions of n using terms in the signed set: (1, 2, -4, -5, 7, 8, -10, -11, 13, 14, ...). This follows from (1, 2, 3, ...) being the INVERT transform of A011655, signed and beginning: (1, 1, 0, -1, -1, 0, 1, 1, 0, ...). - Gary W. Adamson, Apr 28 2013
Union of A047239 and A047257. - Wesley Ivan Hurt, Dec 19 2013
Numbers whose sum of digits (and digital root) is != 0 (mod 3). - Joerg Arndt, Aug 29 2014
The number of partitions of 3*(n-1) into at most 2 parts. - Colin Barker, Apr 22 2015
a(n) is the number of partitions of 3*n into two distinct parts. - L. Edson Jeffery, Jan 14 2017
Conjectured (and like even easily proved) to be the graph bandwidth of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Numbers k such that Fibonacci(k) mod 4 = 1 or 3. Equivalently, sequence lists the indices of the odd Fibonacci numbers (see A014437). - Bruno Berselli, Oct 17 2017
Minimum value of n_3 such that the "rectangular spiral pattern" is the optimal solution for Ripà's n_1 X n_2 x n_3 Dots Problem, for any n_1 = n_2. For example, if n_1 = n_2 = 5, n_3 = floor((3/2)*(n_1 - 1)) + 1 = a(5). - Marco Ripà, Jul 23 2018
For n >= 54, a(n) = sat(n, P_n), the minimum number of edges in a P_n-saturated graph on n vertices, where P_n is the n-vertex path (see Dudek, Katona, and Wojda, 2003; Frick and Singleton, 2005). - Danny Rorabaugh, Nov 07 2017
From Roger Ford, May 09 2021: (Start)
a(n) is the smallest sum of arch lengths for the top arches of a semi-meander with n arches. An arch length is the number of arches covered + 1.
/\ The top arch has a length of 3. /\ The top arch has a length of 3.
/ \ Both bottom arches have a //\\ The middle arch has a length of 2.
//\/\\ length of 1. ///\\\ The bottom arch has a length of 1.
Example: a(6) = 8 /\ /\
//\\ /\ //\\ /\ 2 + 1 + 1 + 2 + 1 + 1 = 8. (End)
This is the lexicographically earliest increasing sequence of positive integers such that no polynomial of degree d can be fitted to d+2 consecutive terms (equivalently, such that no iterated difference is zero). - Pontus von Brömssen, Dec 26 2021

Examples

			G.f.: x + 2*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 10*x^7 + 11*x^8 + 13*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    Filtered([0..110],n->n mod 3<>0); # Muniru A Asiru, Jul 24 2018
    
  • Haskell
    a001651 = (`div` 2) . (subtract 1) . (* 3)
    a001651_list = filter ((/= 0) . (`mod` 3)) [1..]
    -- Reinhard Zumkeller, Jul 07 2012, Aug 23 2011
    
  • Magma
    [3*(2*n-1)/4-(-1)^n/4: n in [1..80]]; // Vincenzo Librandi, Jun 07 2011
    
  • Maple
    A001651 := n -> 3*floor(n/2) - (-1)^n; # Corrected by M. F. Hasler, Apr 07 2015
    A001651:=(1+z+z**2)/(z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
    a[1]:=1:a[2]:=2:for n from 3 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=1..69); # Zerinvary Lajos, Mar 16 2008, offset corrected by M. F. Hasler, Apr 07 2015
  • Mathematica
    Select[Table[n,{n,200}],Mod[#,3]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *)
    Drop[Range[200 + 1], {1, -1, 3}] - 1 (* József Konczer, May 24 2016 *)
    Floor[(3 Range[70] - 1)/2] (* Eric W. Weisstein, Apr 24 2017 *)
    CoefficientList[Series[(x^2 + x + 1)/((x - 1)^2 (x + 1)), {x, 0, 70}],
      x] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 2, 4}, 70] (* Robert G. Wilson v, Jul 25 2018 *)
  • PARI
    {a(n) = n + (n-1)\2}; /* Michael Somos, Jan 15 2011 */
    
  • PARI
    x='x+O('x^100); Vec(x*(1+x+x^2)/((1-x)*(1-x^2))) \\ Altug Alkan, Oct 22 2015
    
  • Python
    print([k for k in range(1, 105) if k%3]) # Michael S. Branicky, Sep 06 2021
    
  • Python
    def A001651(n): return (n<<1)-(n>>1)-1 # Chai Wah Wu, Mar 05 2024

Formula

a(n) = 3 + a(n-2) for n > 2.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
a(2*n+1) = 3*n+1, a(2*n) = 3*n-1.
G.f.: x * (1 + x + x^2) / ((1 - x) * (1 - x^2)). - Michael Somos, Jun 08 2000
a(n) = (4-n)*a(n-1) + 2*a(n-2) + (n-3)*a(n-3) (from the Carlitz et al. article).
a(n) = floor((3*n-1)/2). [Corrected by Gary Detlefs]
a(1) = 1, a(n) = 2*a(n-1) - 3*floor(a(n-1)/3). - Benoit Cloitre, Aug 17 2002
a(n+1) = 1 + n - n mod 2 + (n + n mod 2)/2. - Reinhard Zumkeller, Dec 17 2002
a(1) = 1, a(n+1) = a(n) + (a(n) mod 3). - Reinhard Zumkeller, Mar 23 2003
a(1) = 1, a(n) = 3*(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
a(n) = 3*(2*n-1)/4 - (-1)^n/4. - Benoit Cloitre, Jun 12 2003
Nearest integer to (Sum_{k>=n} 1/k^3)/(Sum_{k>=n} 1/k^4). - Benoit Cloitre, Jun 12 2003
Partial sums of A040001. a(n) = A032766(n-1)+1. - Paul Barry, Sep 02 2003
a(n) = T(n, 1) = T(n, n-1), where T is the array in A026386. - Emeric Deutsch, Feb 18 2004
a(n) = sqrt(3*A001082(n)+1). - Zak Seidov, Dec 12 2007
a(n) = A077043(n) - A077043(n-1). - Reinhard Zumkeller, Dec 28 2007
a(n) = A001477(n-1) + A008619(n-1). - Yosu Yurramendi, Aug 10 2008
Euler transform of length 3 sequence [2, 1, -1]. - Michael Somos, Sep 06 2008
A011655(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
a(n) = n - 1 + ceiling(n/2). - Michael Somos, Jan 15 2011
a(n) = 3*A000217(n)+1 - 2*Sum_{i=1..n-1} a(i), for n>1. - Bruno Berselli, Nov 17 2010
a(n) = 3*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
A215879(a(n)) > 0. - Reinhard Zumkeller, Dec 28 2012 [More precisely, A215879 is the characteristic function of A001651. - M. F. Hasler, Apr 07 2015]
a(n) = 2n - 1 - floor(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = (3n - 2 + (n mod 2)) / 2. - Wesley Ivan Hurt, Mar 31 2014
a(n) = A000217(n) - A000982(n-1). - Bui Quang Tuan, Mar 28 2015
1/1^3 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + ... = 4 Pi^3/(3 sqrt(3)). - M. F. Hasler, Mar 29 2015
E.g.f.: (4 + sinh(x) - cosh(x) + 3*(2*x - 1)*exp(x))/4. - Ilya Gutkovskiy, May 24 2016
a(n) = a(n+k-1) + a(n-k) - a(n-1) for n > k >= 0. - Bob Selcoe, Feb 03 2017
a(n) = -a(1-n) for all n in Z. - Michael Somos, Jul 31 2018
a(n) = n + A004526(n-1). - David James Sycamore, Sep 06 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
Product_{n>=2} (1 + (-1)^n/a(n)) = 2*Pi/(3*sqrt(3)) (A248897). (End)

Extensions

This is a list, so the offset should be 1. I corrected this and adjusted some of the comments and formulas. Other lines probably also need to be adjusted. - N. J. A. Sloane, Jan 01 2011
Offset of pre-2011 formulas verified or corrected by M. F. Hasler, Apr 07-18 2015 and by Danny Rorabaugh, Oct 23 2015

A000407 a(n) = (2*n+1)! / n!.

Original entry on oeis.org

1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0

Views

Author

Keywords

Comments

The e.g.f. of 1/a(n) = n!/(2*n+1)! is (exp(sqrt(x)) - exp(-sqrt(x)))/(2*sqrt(x)). - Wolfdieter Lang, Jan 09 2012
Product of the larger parts of the partitions of 2n+2 into exactly two parts. - Wesley Ivan Hurt, Jun 15 2013
For n > 0, a(n-1) = (2n-1)!/(n-1)!, the number of ways n people can line up in n labeled queues. The derivation is straightforward. Person 1 has (2n-1) choices - be first in line in one of the queues or get behind one of the other people. Person 2 has (2n-2) choices - choose one of the n queues or get behind one of the remaining n-2 people. Continuing in this fashion, we finally find that person n has to choose one of the n queues. - Dennis P. Walsh, Mar 24 2016
For n > 0, a(n-1) is the number of functions f:[n]->[2n] that are acyclic and injective. Note that f is acyclic if, for all x in [n], x is not a member of the set {f(x),f(f(x)), f(f(f(x))), ...}. - Dennis P. Walsh, Mar 25 2016
a(n) is the number of labeled maximal outerplanar graphs with n-3 vertices. - Allan Bickle, Feb 19 2024

Examples

			G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced.  Thus a(1) = 6.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
Column m=0 of A292219.

Programs

  • Magma
    [Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
  • Maple
    For Maple program see A000903.
    a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
  • Mathematica
    Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
    a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
    a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
  • Maxima
    A000407(n):=(2*n+1)!/n!$
    makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    {a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
    

Formula

E.g.f.: (1 - 4*x)^(-3/2). - Michael Somos, Jan 03 2015
E.g.f.: Sum_{k>=0} a(k+2) * x^k / k! = (1 - 2*x - sqrt(1 - 4*x)) / 4.
E.g.f. for a(n-1), n >= 0, with a(-1) := 0 is (-1+1/(1-4*x)^(1/2))/2. 2*a(n) = (4*n+2)(!^4) := Product_{j=0..n} (4*j + 2), (one half of 4-factorial numbers). - Wolfdieter Lang
a(n) = C(n+1)*(n+2)!/2 for all n>=0. - Paul Barry, Feb 16 2005
For n>1, a(n) = (1/2)*A001813(n+1). - Zerinvary Lajos, Jun 06 2007
For asymptotics see the Robinson paper.
Sum_{n >=0} n!/a(n) = 2*Pi/3^(3/2) = 1.2091995761... = A248897 [Jolley eq 261]
G.f.: 1 / (1 - 6*x / (1 - 4*x / (1 - 10*x / (1 - 8*x / (1 - 14*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*(2*k-1)*x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = -(-1)^n / (4 * a(-2-n)) = a(n-1) * (4*n+2) for all n in Z. - Michael Somos, Jan 03 2015
a(n) = A087299(2*n + 1). - Michael Somos, Jan 03 2015
From Peter Bala, Feb 16 2015: (Start)
Recurrence equation: a(n) = 4*a(n-1) + 4*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence b(n) := a(n)*Sum_{k = 0..n} (-1)^k/(2*k + 1), beginning [1, 4, 52, 608, 12624, ...], satisfies the same second-order recurrence equation. This leads to Brouncker's generalized continued fraction expansion Sum_{k >= 0} (-1)^k/(2*k + 1) = Pi/4 = 1/(1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... )))). Note b(n) = 2^n*A024199(n+1).
Recurrence equation: a(n) = (5*n + 2)*a(n-1) - 2*n*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence c(n) := a(n)*Sum_{k = 0..n} k!^2/(2*k + 1)!, beginning [1, 7, 72, 1014, 18276, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion Sum_{k >= 0} k!^2/(2*k + 1)! = 2*Pi/sqrt(27) = 2*A073010 = 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). (End)
a(n) = Product_{k=n+1..(2*n+1)} k. - Carlos Eduardo Olivieri, Jun 03 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 2^(2*n+3/2)*n^(n+1)/exp(n).
Sum_{n>=0} 1/a(n) = exp(1/4)*sqrt(Pi)*erf(1/2) = 1.184593072938653151..., where erf() is the error function. (End)
Sum_{n>=0} (-1)^n/a(n) = exp(-1/4)*sqrt(Pi)*erfi(1/2), where erfi() is the imaginary error function. - Amiram Eldar, Jan 18 2021
It follows from the comments above that we have a(n) = a(n-1)*(4*n+2), with a(1) = 6, a(0) = 1.
a(n) = A081125(2*n+1). - R. J. Mathar, Jun 07 2025

A060544 Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.

Original entry on oeis.org

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

Triangular numbers not == 0 (mod 3). - Amarnath Murthy, Nov 13 2005
Shallow diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Equals the triangular numbers convolved with [1, 7, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
a(n) is congruent to 1 (mod 9) for all n. The sequence of digital roots of the a(n) is A000012(n). The sequence of units' digits of the a(n) is period 20: repeat [1, 0, 8, 5, 1, 6, 0, 3, 5, 6, 6, 5, 3, 0, 6, 1, 5, 8, 0, 1]. - Ant King, Jun 18 2012
Divide each side of any triangle ABC with area (ABC) into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_(2n) on side a, and similarly for sides b and c. If the hexagon with area (Hex(n)) delimited by AA_n, AA_(n+1), BB_n, BB_(n+1), CC_n and CC_(n+1) cevians, we have a(n+1) = (ABC)/(Hex(n)) for n >= 1, (see link with java applet). - Ignacio Larrosa Cañestro, Jan 02 2015; edited by Wolfdieter Lang, Jan 30 2015
For the case n = 1 see the link for Marion's Theorem (actually Marion Walter's Theorem, see the Cugo et al, reference). Also, the generalization considered here has been called there (Ryan) Morgan's Theorem. - Wolfdieter Lang, Jan 30 2015
Pollock states that every number is the sum of at most 11 terms of this sequence, but note that "1, 10, 28, 35, &c." has a typo (35 should be 55). - Michel Marcus, Nov 04 2017
a(n) is also the number of (nontrivial) paths as well as the Wiener sum index of the (n-1)-alkane graph. - Eric W. Weisstein, Jul 15 2021

Crossrefs

Programs

  • GAP
    List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
    
  • Magma
    [(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
    
  • Maple
    H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
  • Mathematica
    Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
    FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
  • PARI
    a(n)=(3*n-1)*(3*n-2)/2
    
  • Sage
    [(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019

Formula

a(n) = C(3*n, 3)/n = (3*n-1)*(3*n-2)/2 = A001504(n-1)/2.
a(n) = a(n-1) + 9*(n-1) = A060543(n, 3) = A006566(n)/n.
a(n) = A025035(n)/A025035(n-1) = A027468(n-1) + 1 = A000217(3*n-2).
a(1-n) = a(n).
From Paul Barry, Mar 15 2003: (Start)
a(n) = C(n-1, 0) + 9*C(n-1, 1) + 9*C(n-1, 2); binomial transform of (1, 9, 9, 0, 0, 0, ...).
a(n) = 9*A000217(n-1) + 1.
G.f.: x*(1 + 7*x + x^2)/(1-x)^3. (End)
Narayana transform (A001263) of [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n-1) = Pochhammer(4,3*n)/(Pochhammer(2,n)*Pochhammer(n+1,2*n)).
a(n-1) = 1/Hypergeometric([-3*n,3*n+3,1],[3/2,2],3/4). - Peter Luschny, Jan 09 2012
From Ant King, Jun 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = A000217(n) + 7*A000217(n-1) + A000217(n-2).
Sum_{n>=1} 1/a(n) = 2*Pi/(3*sqrt(3)) = A248897.
(End)
a(n) = (2*n-1)^2 + (n-1)*n/2. - Ivan N. Ianakiev, Nov 18 2015
a(n) = A101321(9,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 9*x^2)*exp(x)/2 - 1. - G. C. Greubel, Mar 02 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 11*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/(2*e) - 1. (End)
a(n) = A000567(n) + A005449(n-1) (see illustration in links). - John Elias, Nov 10 2020
a(n) = P(2*n,4)*P(3*n,3)/24 for n>=2, where P(s,k) = ((s - 2)*k^2 - (s - 4)*k)/2 is the k-th s-gonal number. - Lechoslaw Ratajczak, Jul 18 2021

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002
Formulas by Paul Berry corrected for offset 1 by Wolfdieter Lang, Jan 30 2015

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A033685 Theta series of hexagonal lattice A_2 with respect to deep hole.

Original entry on oeis.org

0, 3, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 9, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 3*x + 3*x^4 + 6*x^7 + 6*x^13 + 3*x^16 + 6*x^19 + 3*x^25 + 6*x^28 + ...
G.f. = 3*q^(1/3) + 3*q^(4/3) + 6*q^(7/3) + 6*q^(13/3) + 3*q^(16/3) + 6*q^(19/3) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[Mod[n, 3] != 1, 0, 3*DivisorSum[n, KroneckerSymbol[#, 3]&]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 03 2015, adapted from PARI *)
    s = 3q*(QPochhammer[q^9]^3/QPochhammer[q^3])+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
  • PARI
    {a(n) = if( (n<0) || (n%3 != 1), 0, 3 * sumdiv( n, d, kronecker( d, 3)))}; \\ Michael Somos, Jul 16 2005
    
  • PARI
    {a(n) = my(A); if( (n<0) || (n%3 != 1), 0, n = n\3; A = x * O(x^n); 3 * polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, Jul 16 2005

Formula

a(3*n) = a(3*n + 2) = 0.
a(3*n + 1) = A005882(n) = 3 * A033687(n) = -A005928(3*n + 1) = A004016(3*n + 1) / 2.
Expansion of 3 * eta(q^3)^3 / eta(q) in powers of q^(1/3).
G.f.: 3 * x * Product_{k>0} (1 - x^(9*k))^3 / (1 - x^(3*k)) = 3 * Sum_{k>0} x^k * (1 - x^k) * (1 - x^(2*k)) * (1 - x^(4*k)) / (1 - x^(9*k)). - Michael Somos, Jul 15 2005
Expansion of c(x^3) in powers of x where c(x) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
From Michael Somos, Dec 25 2011: (Start)
G.f.: Sum_{i, j in Z} x^(3 * (i^2 + i*j + j^2 + i + j) + 1).
G.f.: Sum_{i, j, k} x^(3 * Q(i, j, k) - 2) where Q(i, j, k) = i*i + j*j + k*k + i*j + i*k + j*k and the sum is over all integer i, j, k where i + j + k = 1. (End)
a(n) = A217219(n)/2. - N. J. A. Sloane, Oct 05 2012
Expansion of 2 * x * psi(x^6) * f(x^6, x^12) + x * phi(x^3) * f(x^3, x^15) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 09 2018
From Amiram Eldar, Oct 13 2022: (Start)
a(n) = 3*A045833(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). (End)

A352324 Decimal expansion of 4*Pi / (5*sqrt(10-2*sqrt(5))).

Original entry on oeis.org

1, 0, 6, 8, 9, 5, 9, 3, 3, 2, 1, 1, 5, 5, 9, 5, 1, 1, 3, 4, 2, 5, 1, 8, 4, 3, 7, 2, 5, 0, 6, 8, 8, 2, 6, 3, 9, 9, 0, 1, 4, 5, 0, 9, 2, 5, 2, 6, 6, 5, 2, 4, 5, 8, 6, 0, 0, 6, 6, 6, 3, 2, 5, 6, 3, 7, 9, 6, 2, 1, 1, 4, 9, 6, 7, 9, 0, 7, 4, 9, 1, 3, 2, 2, 7, 8, 0, 3, 8, 7, 7, 9, 4
Offset: 1

Views

Author

Bernard Schott, Mar 12 2022

Keywords

Comments

Cauchy's residue theorem implies that Integral_{x=0..oo} 1/(1 + x^m) dx = (Pi/m) * csc(Pi/m); this is the case m = 5.
The area of a circle circumscribing a unit-area regular decagon.

Examples

			1.0689593321155951134251843725068826399014509252665...
		

References

  • Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), this sequence (m=5), A019670 (m=6), A352125 (m=8), A094888 (m=10).

Programs

  • Maple
    evalf(4*Pi / (5*(sqrt(10-2sqrt(5)))), 100);
  • Mathematica
    First[RealDigits[N[4Pi/(5Sqrt[10-2Sqrt[5]]), 93]]] (* Stefano Spezia, Mar 12 2022 *)

Formula

Equals Integral_{x=0..oo} 1/(1 + x^5) dx.
Equals (Pi/5) *csc(Pi/5).
Equals (1/2) * A019694 * A121570.
Equals 1/Product_{k>=1} (1 - 1/(5*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047209(k)). - Amiram Eldar, Nov 22 2024
Equals 1/A371604 = A377405/5. - Hugo Pfoertner, Nov 22 2024

A136016 a(n) = 9*n^2-1.

Original entry on oeis.org

8, 35, 80, 143, 224, 323, 440, 575, 728, 899, 1088, 1295, 1520, 1763, 2024, 2303, 2600, 2915, 3248, 3599, 3968, 4355, 4760, 5183, 5624, 6083, 6560, 7055, 7568, 8099, 8648, 9215, 9800, 10403, 11024, 11663, 12320, 12995, 13688, 14399, 15128, 15875, 16640
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A005563(3*n-1). - Paul Curtz, Oct 28 2008
a(2*n) = A136017(n). - Paul Curtz, Sep 30 2008
a(n) = A016777(n)*A016789(n-1). - Reinhard Zumkeller, Feb 15 2009
G.f.: x*(-8-11*x+x^2) / ( x-1 )^3. - R. J. Mathar, Jul 01 2011
From Amiram Eldar, Jul 31 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/9 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2*Pi/(3*sqrt(3)) (A248897).
Product_{n>=1} (1 - 1/a(n)) = sqrt(2/3)*sin(sqrt(2)*Pi/3). (End)
a(n) = a(-n) for all n in Z. Sum_{n in Z} 1/a(n) = -Pi/3^(3/2) = -A073010. - Michael Somos, May 21 2023
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jun 19 2025
Showing 1-10 of 25 results. Next