cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A202948 a(n+1) = 3*A136016*a(n).

Original entry on oeis.org

-3, -72, -7560, -1814400, -778377600, -523069747200, -506854585036800, -669048052248576000, -1154107890128793600000, -2520571632041285222400000, -6797981691615346244812800000
Offset: 1

Views

Author

John M. Campbell, Dec 26 2011

Keywords

Comments

Sums of coefficients from (3n+2)th moments of binomial(m,k)*binomial(2m,k): see Maple code below.

Examples

			The evaluation of sum(k^8 binomial(n,k) binomial(2n,k), k=0..n) involves the polynomial 64n^10 + 192n^9 - 1344n^8 - 1056n^7 + 8256n^6 - 3696n^5 - 9940n^4 + 7551n^3 + 348n^2 - 507n + 60, the sum of the coefficients of which is -72=a(2).
		

Crossrefs

Programs

  • Maple
    with(PolynomialTools); polyn := proc (q) options operator, arrow; 3^q*Pi*GAMMA(2*n)*(sum(k^q*binomial(n, k)*binomial(2*n, k), k = 0 .. n))/(27^n*sqrt(3)*GAMMA(n-floor((1/3)*q+1/3)+2/3)*GAMMA(n-floor((1/3)*q)+1/3)) end proc; coefl := proc (q) options operator, arrow; CoefficientList(expand(polyn(q)), n) end proc; coe := proc (j, h) options operator, arrow; coefl(j)[h] end proc; seq(sum(coe(3*r+2, k), k = 1 .. 5*r+3), r = 1 .. 8) ;
  • PARI
    print1(a=-3);for(n=2,20,print1(", ",a*=27*n*(n-2)+24)) \\ Charles R Greathouse IV, Dec 27 2011

Formula

a(n)=-(1/6)*27^n*GAMMA(n-1/3)*GAMMA(n+1/3)*sqrt(3)/Pi.

A010731 Constant sequence: the all 8's sequence.

Original entry on oeis.org

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of 4+sqrt(17). - Bruno Berselli, Mar 15 2011
Decimal expansion of 8/9. - Elmo R. Oliveira, Feb 20 2024

Crossrefs

Cf. A136016.

Programs

Formula

G.f.: 8/(1-x). - Bruno Berselli, Mar 15 2011
E.g.f.: 8*exp(x). - Elmo R. Oliveira, Feb 20 2024

A136017 a(n) = 36n^2 - 1.

Original entry on oeis.org

35, 143, 323, 575, 899, 1295, 1763, 2303, 2915, 3599, 4355, 5183, 6083, 7055, 8099, 9215, 10403, 11663, 12995, 14399, 15875, 17423, 19043, 20735, 22499, 24335, 26243, 28223, 30275, 32399, 34595, 36863, 39203, 41615, 44099, 46655, 49283, 51983
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The least common multiple of 6*n+1 and 6*n-1. - Colin Barker, Feb 11 2017

Crossrefs

Programs

Formula

O.g.f.: x*(-35-38*x+x^2)/(-1+x)^3 = 1-35/(-1+x)-108/(-1+x)^2-72/(-1+x)^3. - R. J. Mathar, Dec 12 2007
a(n) = A061037(12n+10)=(6n-1)*(6n+1). - Paul Curtz, Sep 25 2008
Sum_{k>=1} (-1)^(k+1)/a(k) = (Pi-3)/6. - Jaume Oliver Lafont, Oct 20 2009
E.g.f.: 1 + (36 x^2 + 26 x - 1) exp(x). - Robert Israel, Jun 09 2016
Product_{n >= 1} A016910(n) / a(n) = Pi / 3. - Fred Daniel Kline, Jun 09 2016
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/12. - Amiram Eldar, Jun 27 2020

A157909 a(n) = 81*n^2 - 9.

Original entry on oeis.org

72, 315, 720, 1287, 2016, 2907, 3960, 5175, 6552, 8091, 9792, 11655, 13680, 15867, 18216, 20727, 23400, 26235, 29232, 32391, 35712, 39195, 42840, 46647, 50616, 54747, 59040, 63495, 68112, 72891, 77832, 82935, 88200, 93627, 99216, 104967, 110880, 116955, 123192
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2009

Keywords

Comments

The identity (18*n^2 - 1)^2 - (81*n^2 - 9)*(2*n)^2 = 1 can be written as A157910(n)^2 - a(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 08 2012

Crossrefs

Programs

  • Magma
    I:=[72, 315, 720]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 08 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {72, 315, 720}, 50] (* Vincenzo Librandi, Feb 08 2012 *)
    81*Range[40]^2-9 (* Harvey P. Dale, Oct 14 2023 *)
  • PARI
    for(n=1, 40, print1(81*n^2 - 9", ")); \\ Vincenzo Librandi, Feb 08 2012

Formula

From Vincenzo Librandi, Feb 08 2012: (Start)
G.f.: -9*x*(8 + 11*x - x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/18 - Pi/(54*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(27*sqrt(3)) - 1/18. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 9*(exp(x)*(9*x^2 + 9*x - 1) + 1).
a(n) = 9*A136016(n). (End)

A144410 a(n) = 4*(3*n+1)*(3*n+2).

Original entry on oeis.org

8, 80, 224, 440, 728, 1088, 1520, 2024, 2600, 3248, 3968, 4760, 5624, 6560, 7568, 8648, 9800, 11024, 12320, 13688, 15128, 16640, 18224, 19880, 21608, 23408, 25280, 27224, 29240, 31328, 33488, 35720, 38024, 40400, 42848, 45368, 47960, 50624, 53360, 56168, 59048, 62000, 65024, 68120, 71288, 74528, 77840, 81224, 84680, 88208, 91808, 95480
Offset: 0

Views

Author

Paul Curtz, Sep 30 2008

Keywords

Comments

The sequence lists all numbers k such that k+1 is a square and k+4 is divisible by 12. - Bruno Berselli, Sep 28 2017

Crossrefs

Programs

Formula

G.f.: 8*(1 + 7*x + x^2)/(1 - x)^3. - Michael De Vlieger, Sep 29 2017
a(n) = 8*A060544(n+1).
a(n) = A136016(2*n+1).
a(n) = a(m) + 36*(n - m)*(n + m + 1). For m = n-1, a(n) = a(n-1) + 72*n. - Bruno Berselli, Sep 29 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Klaus Purath, Jul 05 2020
E.g.f.: 4*(2 +18*x +9*x^2)*exp(x). - G. C. Greubel, Mar 27 2021
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(12*sqrt(3)) (A244977).
Sum_{n>=0} (-1)^n/a(n) = log(2)/6. (End)

A173102 Number of partitions x + y = z with {x,y,z} in {1,2,3,..,3*n} and z > y >= x.

Original entry on oeis.org

2, 9, 20, 36, 56, 81, 110, 144, 182, 225, 272, 324, 380, 441, 506, 576, 650, 729, 812, 900, 992, 1089, 1190, 1296, 1406, 1521, 1640, 1764, 1892, 2025, 2162, 2304, 2450, 2601, 2756, 2916, 3080, 3249, 3422, 3600, 3782, 3969, 4160, 4356, 4556, 4761, 4970
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2010

Keywords

Crossrefs

Programs

  • Maple
    seq( (-1 +(-1)^n +18*n^2)/8, n=1..50); # G. C. Greubel, Mar 03 2020
  • Mathematica
    aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 50}]; aa
  • PARI
    vector(50, n, (18*n^2 +(-1)^n -1)/8 ) \\ G. C. Greubel, Mar 03 2020
  • Python
    def A173102(n):
        return (9*n**2 - (n % 2))//4 # Chai Wah Wu, Mar 03 2020
    

Formula

Conjectures from Colin Barker, Sep 04 2013: (Start)
a(n) = (-1 + (-1)^n + 18*n^2)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(2+x)*(1+2*x)/((1-x)^3*(1+x)). (End)
Conjecture: a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+3)/2). - Wesley Ivan Hurt, Mar 12 2015
From Chai Wah Wu, Mar 03 2020: (Start)
a(n) = (9*n^2-1)/4 if n is odd and a(n) = 9*n^2/4 if n is even.
Proof: z ranges from 2 to 3*n. For each z, since z = y+x >= 2*x, x ranges from 1 to floor(z/2), i.e. there are floor(z/2) partitions. Thus the total number of partitions is a(n) = Sum_{z = 2..3*n} floor(z/2).
For z odd, floor(z/2) = floor((z-1)/2).
As a consequence, if n is odd, 3*n is odd and floor(z/2) occur in pairs, i.e. Sum_{z = 2..3*n} floor(z/2) = 2*(Sum_{w = 1..floor(3*n/2)} w) = 2*(Sum_{w = 1..(3*n-1)/2} w) = 2*((3*n-1)*(3*n+1)/8) = (3*n-1)*(3*n+1)/4 = (9*n^2-1)/4.
If n is even, 3*n is even and floor(z/2) occurs in pairs, except for when z = 3*n where floor(z/2) occurs once. Thus Sum_{z = 2..3*n} floor(z/2) = 2*(Sum_{w = 1..floor(3*n/2)} w) - floor(3*n/2).
This is equal to 2*(Sum_{w = 1..3*n/2} w) - 3*n/2 = (3*n/2)*(3*n/2+1) - 3*n/2 = 9*n^2/4.
This also implies that the above conjectures on the recurrence and g.f. are true.
(End)
E.g.f.: (9*x*(1 + x)*cosh(x) + (-1 + 9*x + 9*x^2)*sinh(x))/4. - Stefano Spezia, Mar 04 2020
Showing 1-6 of 6 results.