cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186733 Triangular array C(n,r) = number of connected r-regular graphs, having girth exactly 3, with n nodes, for 0 <= r < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 5, 3, 1, 1, 0, 0, 0, 0, 16, 0, 4, 0, 1, 0, 0, 0, 13, 57, 59, 21, 5, 1, 1, 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1, 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1, 0, 0, 0, 0, 10747, 0, 367860, 0, 10786
Offset: 1

Views

Author

Jason Kimberley, Mar 26 2012

Keywords

Examples

			01: 0 ;
02: 0, 0 ;
03: 0, 0, 1 ;
04: 0, 0, 0, 1 ;
05: 0, 0, 0, 0, 1 ;
06: 0, 0, 0, 1, 1, 1 ;
07: 0, 0, 0, 0, 2, 0, 1 ;
08: 0, 0, 0, 3, 5, 3, 1, 1 ;
09: 0, 0, 0, 0, 16, 0, 4, 0, 1 ;
10: 0, 0, 0, 13, 57, 59, 21, 5, 1, 1 ;
11: 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1 ;
12: 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1 ;
13: 0, 0, 0, 0, 10747, 0, 367860, 0, 10786, 0, 10, 0, 1 ;
14: 0, 0, 0, 399, 87948, 3459376, 21609299, 21609300, 3459386, 88193, 540, 13, 1, 1 ;
15: 0, 0, 0, 0, 803885, 0, 1470293674, 0, 1470293676, 0, 805579, 0, 17, 0, 1 ;
16: 0, 0, 0, 3268, 8020590, 2585136287, 113314233799, 733351105933, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row is A186743(n).
Connected k-regular simple graphs with girth exactly 3: this sequence (triangle), A186743 (any k); chosen k: A006923 (k=3), A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: this sequence (g=3), A186734 (g=4).

Formula

C(n,r) = A068934(n,r) - A186714(n,r), noting that A186714 has 0 <= r <= n div 2.