A186741 Expansion of f(x^5, x^7) in powers of x where f(, ) is Ramanujan's general theta function.
1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x^5 + x^7 + x^22 + x^26 + x^51 + x^57 + x^92 + x^100 + x^145 + ... G.f. = q + q^121 + q^169 + q^529 + q^625 + q^1225 + q^1369 + q^2209 + q^2401 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[ QPochhammer[-q^5,q^12]*QPochhammer[-q^7,q^12] *QPochhammer[q^12,q^12], {q, 0, n}]; (* G. C. Greubel, Dec 08 2017 *)
-
PARI
{a(n) = my(m); if( !issquare( 24*n + 1, &m), 0, m%12 == 1 || m%12 == 11)};
Formula
Euler transform of period 24 sequence [ 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, ...].
G.f.: Sum_{k in Z} x^(6*k^2 - k) = Product_{k>0} (1 + x^(12*k - 7)) * (1 + x^(12*k - 5)) * (1 - x^(12*k)).
Sum_{k=1..n} a(k) ~ sqrt(2*n/3). - Amiram Eldar, Jan 13 2024
Comments