cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186742 Expansion of f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 21 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^11 + x^14 + x^34 + x^39 + x^69 + x^76 + x^116 + x^125 + ...
G.f. = q^25 + q^49 + q^289 + q^361 + q^841 + q^961 + q^1681 + q^1849 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[{m = Sqrt[24 n + 25]}, If[ n >= 0 && IntegerQ @ m, Boole[ Mod[m, 12] == 5 || Mod[m, 12] == 7], 0]]; (* Michael Somos, Aug 28 2017 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^12] QPochhammer[ -x^1, x^12] QPochhammer[ -x^11, x^12], {x, 0, n}]; (* Michael Somos, Aug 28 2017 *)
  • PARI
    {a(n) = my(m); n++; if( !issquare( 24*n + 1, &m), 0, m%12 == 5 || m%12 == 7)};
    
  • PARI
    {a(n) = my(A); n = 3*n + 3; if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) - eta(x^3 + A) - x * eta(x^18 + A)^2 / eta(x^9 + A)) / 2, n))}; /* Michael Somos, Aug 28 2017 */

Formula

Euler transform of period 24 sequence [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, ...].
a(n) is the characteristic function of A195818. a(n) = max( 0, -A010815(n + 1)).
G.f.: Sum_{k in Z} x^(6*k^2 - 5*k) = Product_{k>0} (1 + x^(12*k - 11)) * (1 + x^(12*k - 1)) * (1 - x^(12*k)).
Expansion of (f(x, x^2) - f(-x, -x^2)) / (2*x) in powers of x. - Michael Somos, Aug 28 2017
Sum_{k=1..n} a(k) ~ sqrt(2*n/3). - Amiram Eldar, Jan 13 2024