A186752 Length of minimum representation of the permutation [n,n-1,...,1] as the product of transpositions (1,2) and left and right rotations (1,2,...,n).
0, 1, 2, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76
Offset: 1
Links
- Danilo Bazzanella, Antonio Di Scala, Simone Dutto, and Nadir Murru, Primality tests, linear recurrent sequences and the Pell equation, arXiv:2002.08062 [math.NT], 2020.
- Sai Satwik Kuppili, C++ program for generating the moves for a given n
- Sai Satwik Kuppili and Bhadrachalam Chitturi, An Upper Bound for Sorting R_n with LRE, arXiv:2002.07342 [cs.DS], 2020.
Programs
-
Sage
def a186752(n): t = tuple(1..n); G = PermutationGroup([[(1, 2)], [t], PermutationGroupElement([t])^(-1)]); return G.cayley_graph().distance(G.one(),G(list(t)[::-1])) # Max Alekseyev, Sep 09 2011
Extensions
a(9) from Max Alekseyev, Sep 09 2011
Incorrect value for a(10) deleted by N. J. A. Sloane, Mar 09 2019
a(10) and a(11) added by Sai Satwik Kuppili and Bhadrachalam Chitturi, Mar 28 2019
a(12) and a(13) from Kevin Ryde, Dec 12 2024
Comments