cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186755 Number of permutations of {1,2,...,n} having no increasing cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 0, 0, 1, 5, 23, 129, 894, 7202, 65085, 651263, 7161713, 85922825, 1116946192, 15637356864, 234562319757, 3753007054781, 63801128569995, 1148420035784849, 21819978138955622, 436399552962252082, 9164390639379582121, 201616594791853840063
Offset: 0

Views

Author

Emeric Deutsch, Feb 26 2011

Keywords

Comments

a(n) = A186754(n,0).

Examples

			a(4)=5 because we have (1432), (1342), (1423), (1243), and (1324).
a(5)=23 counts all cyclic permutations of {1,2,3,4,5}, except (12345).
		

Crossrefs

Programs

  • Maple
    g := exp(1-exp(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*((j-1)!-1), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 23 2016 *)

Formula

E.g.f.: exp(1-exp(z))/(1-z).
a(n) ~ n! * exp(1-exp(1)) = 0.179374... * n!. - Vaclav Kotesovec, Mar 17 2014