A186770 Number of permutations of {1,2,...,n} having no nonincreasing even cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)
1, 1, 2, 6, 19, 95, 451, 3157, 21092, 189828, 1660351, 18263861, 197541565, 2568040345, 33029787974, 495446819610, 7377279473779, 125413751054243, 2120559951767503, 40290639083582557, 762353357154540584, 16009420500245352264
Offset: 0
Keywords
Examples
a(4)=19 because among the 24 permutations of {1,2,3,4} only (1243), (1324), (1342), (1423), and (1432) have nonincreasing even cycles.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
g := exp(cosh(z)-1)*sqrt((1+z)/(1-z)): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)* binomial(n-1, j-1)*`if`(j::odd, (j-1)!, 1), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Apr 13 2017
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[a[n-j]*Binomial[n-1, j-1]*If[OddQ[j], (j-1)!, 1], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
Formula
E.g.f.: g(z) = exp(cosh z - 1)*sqrt((1+z)/(1-z)).
Comments