cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186769 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k nonincreasing even cycles (0<=k<=floor(n/4)). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 2, 6, 19, 5, 95, 25, 451, 269, 3157, 1883, 21092, 18353, 875, 189828, 165177, 7875, 1660351, 1764749, 203700, 18263861, 19412239, 2240700, 197541565, 237001478, 43736682, 721875, 2568040345, 3081019214, 568576866, 9384375, 33029787974, 43065489284, 10638945317, 444068625
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

Row n has 1+floor(n/4) entries.
Sum of entries in row n is n!.
T(n,0) = A186770(n).
Sum(k*T(n,k),k>=0) = A184958(n).

Examples

			T(4,1)=5 because we have (1243), (1324), (1342), (1423), and (1432).
Triangle starts:
1;
1;
2;
6;
19,5;
95,25;
451,269;
		

Crossrefs

Programs

  • Maple
    g := exp((1-t)*(cosh(z)-1))*(1+z)^((1-t)*1/2)/(1-z)^((1+t)*1/2): gser := simplify(series(g, z = 0, 18)): for n from 0 to 14 do P[n] := sort(expand(factorial(n)*coeff(gser, z, n))) end do; for n from 0 to 14 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
          `if`(j::odd, (j-1)!, 1+x*((j-1)!-1)), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-j]*Binomial[n - 1, j - 1]*If[ OddQ[j], (j - 1)!, 1 + x*((j - 1)! - 1)], {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z)=exp((1-t)(cosh z - 1))*(1+z)^{(1-t)/2}/(1-z)^{(1+t)/2}.
The 5-variate e.g.f. H(x,y,u,v,z) of permutations with respect to size (marked by z), number of increasing odd cycles (marked by x), number of increasing even cycles (marked by y), number of nonincreasing odd cycles (marked by u), and number of nonincreasing even cycles (marked by v), is given by
H(x,y,u,v,z) = exp(((x-u)sinh z + (y-v)(cosh z - 1))*(1+z)^{(u-v)/2}/(1-z)^{(u+v)/2}.
We have: G(t,z) = H(1,1,1,t,z).

A186765 Number of permutations of {1,2,...,n} having no increasing even cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 1, 3, 14, 70, 419, 2933, 23421, 210789, 2108144, 23189584, 278279165, 3617629145, 50646737049, 759701055735, 12155215581362, 206638664883154, 3719496008830391, 70670424167777429, 1413408484443295197, 29681578173309199137, 652994719769134284068
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Examples

			a(3)=3 because we have (1)(2)(3), (132), and (123).
		

Crossrefs

Programs

  • Maple
    g := exp(1-cosh(z))/(1-z); gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*((j-1)!+irem(j, 2)-1), j=1..n))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 05 2025
  • Mathematica
    CoefficientList[Series[E^(1-Cosh[x])/(1-x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 24 2014 *)
  • Maxima
    a(n):=((sum(sum(((-1)^k*sum(((sum((j-2*i)^m*binomial(j,i),i,0,j))*(-1)^(j-k)*binomial(k,j))/2^j,j,0,k))/k!,k,1,m)/m!,m,1,n))+1)*n!; /* Vladimir Kruchinin, Apr 25 2011 */
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(1-cosh(x))/(1-x))) /* Joerg Arndt, Apr 26 2011 */

Formula

a(n) = A186764(n,0).
E.g.f.: exp(1-cosh(z))/(1-z).
a(n) = ((sum(m=1..n,sum(k=1..m,((-1)^k*sum(j=0..k,((sum(i=0..j,(j-2*i)^m*binomial(j, i)))*(-1)^(j-k)*binomial(k, j))/2^j))/k!)/m!))+1)*n!. [Vladimir Kruchinin, Apr 25 2011]
a(n) ~ n! * exp(1-cosh(1)). - Vaclav Kotesovec, Feb 24 2014

A186767 Number of permutations of {1,2,...,n} having no nonincreasing odd cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 2, 5, 20, 77, 472, 2585, 21968, 157113, 1724064, 15229645, 204738624, 2151199429, 34194201472, 416221515169, 7631627843840, 105565890206193, 2192501224174080, 33962775502534165, 787900686999286784, 13509825183288167869
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

a(n) = A186766(n,0).

Examples

			a(3)=5 because we have (1)(2)(3), (1)(23), (12)(3), (13)(2), and (123).
		

Crossrefs

Programs

  • Maple
    g := exp(sinh(z))/sqrt(1-z^2): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*`if`(j::even, (j-1)!, 1), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[a[n-j]*Binomial[n-1, j-1]*If[EvenQ[j], (j-1)!, 1], {j, 1, n}]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)

Formula

E.g.f.: g(z) = exp(sinh z)/sqrt(1-z^2).
Showing 1-3 of 3 results.