A124901
Smallest order of any nonsolvable transitive Galois group for a polynomial of degree n.
Original entry on oeis.org
60, 60, 168, 168, 504, 60, 660, 60, 5616, 168, 60, 336, 4080, 180, 60822550204416000, 60, 168, 1320, 10200960, 120, 300, 5616, 1512, 168, 4420880996869850977271808000000, 60
Offset: 5
a(8)=336 because nonsolvable Galois group PGL(2,7)=L(8) has order 336.
A124900
Largest order of any solvable transitive Galois group for an irreducible polynomial of degree n.
Original entry on oeis.org
1, 2, 6, 24, 20, 72, 42, 1152, 1296, 800, 110, 82944, 156, 3528, 155520, 7962624, 272, 2239488, 342, 159252480, 11757312, 225280, 506, 13759414272, 64000000, 1277952, 13060694016, 192631799808, 812, 48372940800
Offset: 1
a(9)=1296 because solvable Galois group T9_31 (in MAGMA's list) has order 1296
A186860
Largest coefficient of (1)(1+2x)(1+2x+3x^2)*...*(1+2x+3x^2+...+(n+1)*x^n).
Original entry on oeis.org
1, 2, 7, 49, 562, 9132, 207915, 6296448, 239972192, 11427298486, 661227186254, 45688884832738, 3716852205228166, 351101915633367990, 38275029480566516322, 4750162039324230600200, 666311679640315952033655, 105085327413072323807645048
Offset: 1
-
f[n_] := Max@ CoefficientList[ Expand@ Product[ Sum[(i + 1)*x^i, {i, 0, j}], {j, n - 1}], x]; Array[f, 18]
-
def A186860(n):
p = prod(sum(i*x^(i-1) for i in (1..k)) for k in (1..n))
return Integer(max(p.coefficients())[0]) # D. S. McNeil, Feb 28 2011
Showing 1-3 of 3 results.
Comments