cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A240580 Numbers k such that DigitSum(5^k) > DigitSum(5^(k+1)).

Original entry on oeis.org

4, 10, 11, 12, 16, 18, 24, 27, 28, 32, 34, 36, 39, 44, 45, 49, 51, 52, 57, 58, 60, 61, 62, 63, 64, 69, 75, 76, 77, 78, 80, 83, 84, 87, 88, 90, 91, 94, 96, 97, 100, 103, 106, 107, 108, 113, 114, 115, 118, 119, 124, 129, 130, 132, 135, 138, 139, 142, 143, 144, 149
Offset: 1

Views

Author

K. D. Bajpai, Apr 08 2014

Keywords

Examples

			The digitsum(5^4) = 13 > 11 = digitsum(5^(4+1)). Hence, 4 appears in the sequence.
The digitsum(5^11) = 38 > 28 = digitsum(5^(11+1)). Hence, 11 appears in the sequence.
		

Crossrefs

Cf. A186775 (digitsum(2^k) > digitsum(2^(k+1))), A239935 (digitsum(3^k) > digitSum(3^(k+1))).

Programs

  • Maple
    a := proc(n) local a,b,d,e; a:=5^n; b:=add( i,i = convert((a), base, 10))(a); d:=5^(n+1); e:=add( i,i = convert((d), base, 10))(d); if b > e then RETURN (n); fi; end: seq(a(n), n=1..300);
  • Mathematica
    k=Table[Total[IntegerDigits[5^n,10]],{n,1,300}];Flatten[Position[Greater@@@Partition[k,2,1],True]]
    Select[Range[150],Total[IntegerDigits[5^#]]>Total[IntegerDigits[5^(#+1)]]&] (* Harvey P. Dale, Jun 04 2025 *)
Showing 1-1 of 1 results.