A186812 Expansion of 1/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-x).
1, 1, 3, 8, 21, 53, 135, 346, 886, 2266, 5796, 14828, 37935, 97047, 248269, 635134, 1624833, 4156729, 10633949, 27204296, 69595384, 178042372, 455476844, 1165223500, 2980932677, 7625970145, 19509135875, 49909241100, 127680301337, 326638093273, 835621805859
Offset: 0
Links
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,4,3,1)
Programs
-
Mathematica
CoefficientList[Series[1/(1-x^6-3x^5-4x^4-3x^3-2x^2-x),{x,0,30}],x] (* or *) LinearRecurrence[{1,2,3,4,3,1},{1,1,3,8,21,53},30] (* Harvey P. Dale, Aug 30 2014 *)
Formula
a(n+1) = sum(m=1..n, sum(k=m..n, binomial(k,n-k) *sum(j=0..m, binomial(m,j) *binomial(j,k-3*m+2*j)))).
Extensions
More terms from Harvey P. Dale, Aug 30 2014