A186864 Number of 5-step king's tours on an n X n board summed over all starting positions.
0, 0, 1208, 6712, 17280, 32520, 52432, 77016, 106272, 140200, 178800, 222072, 270016, 322632, 379920, 441880, 508512, 579816, 655792, 736440, 821760, 911752, 1006416, 1105752, 1209760, 1318440, 1431792, 1549816, 1672512, 1799880, 1931920
Offset: 1
Examples
Some solutions for 3 X 3: 0 5 0 0 1 2 3 1 0 3 2 1 0 1 2 0 1 2 0 5 0 2 3 4 0 3 5 2 4 0 5 4 0 0 4 3 0 5 3 1 3 4 1 0 0 0 4 0 5 0 0 0 0 0 0 5 0 0 0 4 2 0 0
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (terms 1..32 from R. H. Hardin, terms 33..50 from J. Volkmar Schmidt)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{0,0,1208,6712,17280,32520},50] (* Paolo Xausa, Oct 29 2023 *)
-
PARI
a(n) = if(n <= 3, [0, 0, 1608][n], 2336*n^2 - 10456*n + 11160) \\ David A. Corneth, Sep 04 2023
Formula
Empirical: a(n) = 2336*n^2 - 10456*n + 11160 = 8*(292*(n-1)*(n-4) + 153*n + 227) for n > 3. [Proved, see comments. - David A. Corneth, Sep 04 2023]
Conjectures from Colin Barker, Apr 19 2018: (Start)
G.f.: 8*x^3*(151 + 386*x + 96*x^2 - 49*x^3) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 6. (End)
The above conjectures are true. - Stefano Spezia, Oct 28 2023
Comments