A186891 Numbers n such that the Stern polynomial B(n,x) is irreducible.
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 157, 161, 163, 167, 169, 173, 175, 179, 181, 185, 191, 193, 197, 199
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Maciej Ulas and Oliwia Ulas, On certain arithmetic properties of Stern polynomials, arXiv:1102.5109 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
ps[n_] := ps[n] = If[n<2, n, If[OddQ[n], ps[Quotient[n, 2]] + ps[Quotient[n, 2] + 1], x ps[Quotient[n, 2]]]]; selQ[n_] := IrreduciblePolynomialQ[ps[n]]; Join[{1}, Select[Range[200], selQ]] (* Jean-François Alcover, Nov 02 2018, translated from PARI *)
-
PARI
ps(n)=if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2))) is(n)=polisirreducible(ps(n)) \\ Charles R Greathouse IV, Apr 07 2015
Comments