A186924 Expansion of (phi(-q^3) / phi(-q))^2 in powers of q where phi is a Ramanujan theta function.
1, 4, 12, 28, 60, 120, 228, 416, 732, 1252, 2088, 3408, 5460, 8600, 13344, 20424, 30876, 46152, 68268, 100016, 145224, 209120, 298800, 423840, 597108, 835804, 1162824, 1608508, 2212896, 3028632, 4124664, 5590976, 7544604, 10137264, 13565016
Offset: 0
Keywords
Examples
G.f. = 1 + 4*q + 12*q^2 + 28*q^3 + 60*q^4 + 120*q^5 + 228*q^6 + 416*q^7 + 732*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^2 / EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; (* Michael Somos, Sep 05 2015 *) nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(3*k))^2 / ((1-x^k)^2 * (1-x^(6*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)))^2, n))};
Formula
Euler transform of period 6 sequence [ 4, 2, 0, 2, 4, 0, ...].
Expansion of (eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)))^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A058487.
Convolution inverse of A217771. - Michael Somos, Sep 05 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Comments