cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058487 McKay-Thompson series of class 12I for the Monster group.

Original entry on oeis.org

1, 2, 1, 0, -2, -2, 2, 4, 3, -4, -8, -4, 5, 14, 7, -8, -20, -12, 14, 28, 17, -20, -44, -24, 28, 66, 36, -40, -90, -52, 56, 124, 71, -80, -176, -96, 109, 244, 133, -144, -326, -182, 198, 432, 240, -268, -580, -316, 349, 772, 420, -456, -1004, -552, 600, 1300, 713, -780, -1692, -916, 1001, 2186, 1182
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 5 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 21 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(12). [Yang 2004] - Michael Somos, Jul 21 2014

Examples

			G.f. = 1 + 2*x + x^2 - 2*x^4 - 2*x^5 + 2*x^6 + 4*x^7 + 3*x^8 - 4*x^9 - 8*x^10 + ...
T12I = 1/q + 2*q + 1*q^3 - 2*q^7 - 2*q^9 + 2*q^11 + 4*q^13 + 3*q^15 - 4*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / EllipticTheta[ 2, 0, q^3]^2, {q, 0, 2 n - 1}]; (* Michael Somos, Jul 21 2014 *)
    QP = QPochhammer; s = QP[q^2]^4*(QP[q^3]^2/(QP[q]^2*QP[q^6]^4)) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A * (A + 3*x) / (A - x))); polcoeff(A, n))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2))^2, n))};

Formula

Expansion of (psi(x) / psi(x^3))^2 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 21 2014
G.f.: ( Product_{k>0} (1 - x^(6*k - 2)) * (1 - x^(6*k - 4)) / ((1 - x^(6*k - 1)) * (1 - x^(6*k - 5))) )^2.
Expansion of q^(1/2) * (eta(q^2)^4 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)^4)) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 0, -2, 2, 0,...]. - Michael Somos, Mar 18 2004
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 + 3*v - u^2*v + v^2. - Michael Somos, Mar 18 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A186924.
a(n) = (-1)^n * A062243(n).
Convolution square is A128633. Convolution inverse of A217786. - Michael Somos, Jul 21 2014

A187100 Expansion of q * (psi(-q^3) * psi(q^6)) / (psi(-q) * phi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 7, 15, 30, 57, 104, 183, 313, 522, 852, 1365, 2150, 3336, 5106, 7719, 11538, 17067, 25004, 36306, 52280, 74700, 105960, 149277, 208951, 290706, 402127, 553224, 757158, 1031166, 1397744, 1886151, 2534316, 3391254, 4520112, 6002007, 7940846
Offset: 1

Views

Author

Michael Somos, Mar 05 2011

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			q + 3*q^2 + 7*q^3 + 15*q^4 + 30*q^5 + 57*q^6 + 104*q^7 + 183*q^8 + 313*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^(2*k))^2 * (1-x^(3*k)) * (1-x^(12*k))^3 / ((1-x^k)^3 * (1-x^(4*k)) * (1-x^(6*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    a[n_] := SeriesCoefficient[(EllipticTheta[2, 0, I*q^(3/2)]* EllipticTheta[2, 0, q^3])/(2*EllipticTheta[2, 0, I*q^(1/2)]* EllipticTheta[3, 0, -q]), {q, 0, n}]; Table[a[n], {n, 50}] (* G. C. Greubel, Nov 27 2017 *)
    eta[q_] := q^(1/24)*QPochhammer[q]; A:= eta[q^2]^2*eta[q^3]*eta[q^12]^3/ (eta[q]^3*eta[q^4]*eta[q^6]^2); a:=CoefficientList[Series[A/q, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^3 / (eta(x + A)^3 * eta(x^4 + A) * eta(x^6 + A)^2), n))}

Formula

Expansion of eta(q^2)^2 * eta(q^3) * eta(q^12)^3 / (eta(q)^3 * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 3, 1, 2, 2, 3, 2, 3, 2, 2, 1, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/12) * 1/f(t) where q = exp(2 Pi i t).
Convolution inverse of A187130. A186924(n) = 4 * a(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015

A261320 Expansion of (phi(q^3) / phi(q))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 12, -28, 60, -120, 228, -416, 732, -1252, 2088, -3408, 5460, -8600, 13344, -20424, 30876, -46152, 68268, -100016, 145224, -209120, 298800, -423840, 597108, -835804, 1162824, -1608508, 2212896, -3028632, 4124664, -5590976, 7544604, -10137264, 13565016
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*x + 12*x^2 - 28*x^3 + 60*x^4 - 120*x^5 + 228*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^3] / EllipticTheta[ 3, 0, q])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A)^4 * eta(x^6 + A)^10 / (eta(x^2 + A)^10 * eta(x^3 + A)^4 * eta(x^12 + A)^4), n))};

Formula

Expansion of eta(q)^4 * eta(q^4)^4 * eta(q^6)^10 / ( eta(q^2)^10 * eta(q^3)^4 * eta(q^12)^4) in powers of q.
Euler transform of period 12 sequence [ -4, 6, 0, 2, -4, 0, -4, 2, 0, 6, -4, 0, ...].
G.f.: (Sum_{k in Z} x^(3*k^2)) / (Sum_{k in Z} x^k^2)^2.
G.f.: (Product_{k>0} (1 + (-x)^k + x^(2*k)) / (1 - (-x)^k + x^(2*k)))^2.
a(n) = (-1)^n * A186924(n) = A233673(3*n) = A260215(3*n).
Convolution square of A132002.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (2*3^(5/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A217771 Expansion of (phi(-x) / phi(-x^3))^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 4, 4, -12, 8, 12, -32, 20, 28, -72, 48, 60, -152, 96, 120, -300, 184, 228, -560, 344, 416, -1008, 608, 732, -1756, 1048, 1252, -2976, 1768, 2088, -4928, 2900, 3408, -7992, 4672, 5460, -12728, 7408, 8600, -19944, 11544, 13344, -30800, 17744, 20424
Offset: 0

Views

Author

Michael Somos, Mar 24 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*x + 4*x^2 + 4*x^3 - 12*x^4 + 8*x^5 + 12*x^6 - 32*x^7 + 20*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2 / EllipticTheta[ 4, 0, q^3]^2, {q, 0, n}]; (* Michael Somos, Mar 24 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A)^4), n))}

Formula

Expansion of eta(q)^4 * eta(q^6)^2 / (eta(q^2)^2 * eta(q^3)^4) in powers of q.
Euler transform of period 6 sequence [ -4, -2, 0, -2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u) * (u + v^2) - 4 * u.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (3 + u * v)^2 - v * (3*u + v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A217786.
a(n) = - 4 * A123649(n) unless n=0.
Convolution inverse of A186924. Convolution square of A139137.

A261156 Expansion of chi(q) * chi(-q^9) / (chi(-q) * chi(q^9)) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 16, 22, 28, 36, 48, 60, 76, 96, 120, 150, 184, 228, 280, 340, 416, 504, 608, 732, 878, 1052, 1252, 1488, 1768, 2088, 2464, 2902, 3408, 3996, 4672, 5460, 6364, 7400, 8600, 9972, 11544, 13344, 15400, 17752, 20424, 23472, 26944, 30876, 35346
Offset: 0

Views

Author

Michael Somos, Aug 10 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 22*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ -q, q] QPochhammer[ q^9, q^18] QPochhammer[ q^9, -q^9], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^9)^2 * eta(q^36) / (eta(q)^2 * eta(q^4) * eta(q^18)^3) in powers of q.
G.f. A(x) = B(x) / B(x^9) where B(x) is the g.f. of A080054.
Euler transform of period 36 sequence [ 2, -1, 2, 0, 2, -1, 2, 0, 0, -1, 2, 0, 2, -1, 2, 0, 2, 0, 2, 0, 2, -1, 2, 0, 2, -1, 0, 0, 2, -1, 2, 0, 2, -1, 2, 0, ...].
a(n) = 2 * A233693(n) unless n=0. a(2*n) = 2 * A123629(n) = 2 * A212484(n) unless n=0.
a(3*n) = A186924(n). a(3*n) = 4 * A187100(n) unless n=0.
a(n) = (-1)^n * A260215(n). - Michael Somos, Aug 14 2015
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Showing 1-5 of 5 results.