cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A217786 Expansion of (psi(x^3) / psi(x))^2 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 3, -4, 7, -12, 17, -24, 36, -52, 71, -96, 133, -182, 240, -316, 420, -552, 713, -916, 1182, -1516, 1920, -2424, 3063, -3852, 4806, -5976, 7430, -9204, 11336, -13924, 17088, -20908, 25473, -30960, 37586, -45518, 54939, -66172, 79603, -95556, 114399
Offset: 0

Views

Author

Michael Somos, Mar 24 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 3*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 17*x^6 - 24*x^7 + 36*x^8 + ...
G.f. = q - 2*q^3 + 3*q^5 - 4*q^7 + 7*q^9 - 12*q^11 + 17*q^13 - 24*q^15 + 36*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(-1/2) (EllipticTheta[ 2, 0, x^(3/2)] / EllipticTheta[ 2, 0, x^(1/2)])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 / (eta(x^2 + A)^4 * eta(x^3 + A)^2), n))};

Formula

Expansion of q^(-1/2) * eta(q)^2 * eta(q^6)^4 / (eta(q^2)^4 * eta(q^3)^2) in powers of q.
Euler transform of period 6 sequence [ -2, 2, 0, 2, -2, 0, ...].
Given g.f. A(x), B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 - v) * (v - u^2) - 4 * u^2 * v.
Given g.f. A(x), B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = u * (u + 3*v)^2 - v * (1 + 3*u*v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A217771.
G.f.: Product_{k>0} (1 + x^k + x^(2*k))^2 * (1 - x^k + x^(2*k))^4.
Convolution square of A101195. Convolution inverse of A058487.
a(n) = - A139216(6*n + 3). - Michael Somos, Sep 07 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (6^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018

A186924 Expansion of (phi(-q^3) / phi(-q))^2 in powers of q where phi is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 12, 28, 60, 120, 228, 416, 732, 1252, 2088, 3408, 5460, 8600, 13344, 20424, 30876, 46152, 68268, 100016, 145224, 209120, 298800, 423840, 597108, 835804, 1162824, 1608508, 2212896, 3028632, 4124664, 5590976, 7544604, 10137264, 13565016
Offset: 0

Views

Author

Michael Somos, Mar 05 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*q + 12*q^2 + 28*q^3 + 60*q^4 + 120*q^5 + 228*q^6 + 416*q^7 + 732*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^2 / EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; (* Michael Somos, Sep 05 2015 *)
    nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(3*k))^2 / ((1-x^k)^2 * (1-x^(6*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)))^2, n))};

Formula

Euler transform of period 6 sequence [ 4, 2, 0, 2, 4, 0, ...].
Expansion of (eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)))^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A058487.
Convolution square of A098151. a(n) = 4 * A187100(n) unless n=0.
Convolution inverse of A217771. - Michael Somos, Sep 05 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015

A261321 Expansion of (phi(q) / phi(q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 4, -4, -12, -8, 12, 32, 20, -28, -72, -48, 60, 152, 96, -120, -300, -184, 228, 560, 344, -416, -1008, -608, 732, 1756, 1048, -1252, -2976, -1768, 2088, 4928, 2900, -3408, -7992, -4672, 5460, 12728, 7408, -8600, -19944, -11544, 13344, 30800, 17744, -20424
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The generating function is associated with a modular equation of degree 3 and is the multiplier denoted by "m". - Michael Somos, Nov 01 2017

Examples

			G.f. = 1 + 4*x + 4*x^2 - 4*x^3 - 12*x^4 - 8*x^5 + 12*x^6 + 32*x^7 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 230 Entry 5(iii), g.f. denoted by multiplier m.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^3 + A)^4 * eta(x^12 + A)^4 / (eta(x + A)^4 * eta(x^4 + A)^4 * eta(x^6 + A)^10), n))};

Formula

Expansion of eta(q^2)^10 * eta(q^3)^4 * eta(q^12)^4 / (eta(q)^4 * eta(q^4)^4 * eta(q^6)^10) in powers of q.
G.f.: (Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2))^2.
a(n) = -(1)^n * A217771(n). a(n) = 4 * A187153(n) = 4 * A213265(n) unless n=0.
a(2*n) = 4 * A123633(n) = 4 * A128636(n) unless n=0. a(3*n) = -4 * A228447(n) unless n=0.
Convolution inverse is A261320. Convolution square of A139137.
Showing 1-3 of 3 results.