A187012 Antidiagonal sums of A103516.
1, 2, 5, 4, 8, 6, 11, 8, 14, 10, 17, 12, 20, 14, 23, 16, 26, 18, 29, 20, 32, 22, 35, 24, 38, 26, 41, 28, 44, 30, 47, 32, 50, 34, 53, 36, 56, 38, 59, 40, 62, 42, 65, 44, 68, 46, 71, 48, 74, 50, 77, 52, 80, 54, 83, 56, 86, 58, 89, 60, 92, 62, 95, 64
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
CoefficientList[Series[(1 + 2 x + 3 x^2 - x^4)/((1 - x)^2 (1 + x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 24 2014 *)
-
PARI
a(n) = sum(k=0, n\2, 0^(k*(n-2*k))*(n-k+1)); \\ Michel Marcus, Aug 30 2013
Formula
a(n) = sum{k=0..floor(n/2), 0^(k(n-2k))*(n-k+1)}. - Paul Barry, Aug 30 2013
G.f. : x^2*(1+2*x+3*x^2-x^4)/((1-x)^2*(1+x)^2).
a(n) = A080512(n) - 1 for n>2.
Comments