A187025 a(n) is the least number k such that k*n+1 is a prime dividing n^n-1.
1, 4, 1, 2, 1, 4, 2, 2, 1, 1436, 1, 4, 501969, 4, 1, 644, 1, 5784852794328402307380, 2, 2, 1, 20, 3, 4, 36, 4, 1, 2, 1, 18353950678197027912484562396837972855962080, 8, 2, 3, 8, 1, 4, 5, 4, 1, 2, 1, 4, 2, 4, 1, 36, 2, 4, 3, 128, 1, 2, 5, 85840, 2, 4, 1, 12, 1, 16, 273
Offset: 2
Keywords
Examples
7^7-1 = 2*3*29*4733; the smallest prime divisor of the form k*n+1 is 29 = 4*7+1, hence a(7) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..138
Programs
-
Magma
A187025:=function(n); for d in PrimeDivisors(n^n-1) do if d mod n eq 1 then return (d-1)/n; end if; end for; return 0; end function; [ A187025(n): n in [2..50] ]; // Klaus Brockhaus, Mar 02 2011
-
Mathematica
Table[p=First/@FactorInteger[n^n-1]; (Select[p, Mod[#1, n] == 1 &, 1][[1]] - 1)/n, {n, 2, 40}]
Comments