cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187041 Numbers for which Midy's theorem does not hold.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 45, 48, 50, 51, 53, 54, 57, 60, 62, 63, 64, 66, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87, 90, 93, 96, 99, 100, 102, 105, 106, 107, 108, 111, 114, 117, 119, 120, 123, 124, 125, 126, 128, 129, 132, 134, 135, 138, 141, 142, 144, 147, 148, 150
Offset: 1

Views

Author

Jani Melik, Mar 02 2011

Keywords

Crossrefs

Programs

  • Maple
    fct1 := proc(an) local i,st:  st := 0:
    for i from 1 to nops(an)/2 do
       st := op(i,an)*10^(nops(an)/2-i) + st
    od: RETURN(st):  end:
    fct2 := proc(an) local i,st:  st := 0:
    for i from nops(an)/2+1 to nops(an) do
       st := op(i,an)*10^(nops(an)/2-i+nops(an)/2) + st
    od:  RETURN(st):  end:
    A187041 := proc(n) local st:
    st := op(4,numtheory[pdexpand](1/n));
    if (modp(nops(st),2) <> 0 or nops(st) = 1 or n = 1) then
         RETURN(n)
    elif (modp(nops(st),2) = 0) then
       if not(10^(nops(st)/2)-1 - (fct1(st)+fct2(st)) = 0) then
           RETURN(n)
    fi: fi: end:  seq(A187041(n), n=1..250);
  • Mathematica
    okQ[n_] := Module[{ps = First /@ FactorInteger[n], d, len}, If[n < 2 || Complement[ps, {2, 5}] == {}, False, d = RealDigits[1/n, 10][[1, -1]]; len = Length[d]; EvenQ[len] && Union[Total[Partition[d, len/2]]] == {9}]]; Select[Range[300], ! okQ[#] &] (* T. D. Noe, Mar 02 2011 *)

Extensions

Corrected by T. D. Noe, Mar 02 2011