cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187397 Expansion of -2*x^4 *(3*x^13 +2*x^12 +x^11 -6*x^10 -10*x^9 -6*x^8 +x^7 +7*x^6 +5*x^5 -x^4 -8*x^3 -11*x^2 -8*x -5) / ((x -1)^4 *(x +1)^2 *(x^2 +1)^2 *(x^2 +x +1)^2).

Original entry on oeis.org

0, 0, 0, 0, 10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426, 490, 590, 698, 780, 904, 1036, 1176, 1326, 1484, 1650, 1874, 2060, 2254, 2512, 2782, 3006, 3300, 3606, 3924, 4256, 4600, 4956, 5398, 5782, 6178, 6666, 7170, 7608, 8144
Offset: 0

Views

Author

Sean A. Irvine, Mar 23 2011

Keywords

Comments

In contrast, the number of distinct lines passing through 4 or more points in an n X n grid is given by 0, 0, 0, 10, 16, 22, 44, 74, 92, 154, 232, 326, 436, 562, 704, 998, 1268,.. = A018808(n) -A018809(n) -A018810(n) = A225606(n) -A018810(n). - David W. Wilson, Aug 05 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 2x^4 (5 + 8x + 11x^2 + 8x^3 + x^4 - 5x^5 - 7x^6 - x^7 + 6x^8 + 10x^9 + 6x^10 - x^11 - 2x^12 - 3x^13)/((-1 + x)^4 (1 + x)^2 (1 + x^2)^2 (1 + x + x^2)^2), {x, 0, 43}], x] (* or *) LinearRecurrence[{0, 0, 2, 2, 0, -1, -4, -1, 0, 2, 2, 0, 0, -1}, {10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426}, 40] (* Robert G. Wilson v, Feb 17 2014 *)

Extensions

Definition replaced with Colin Barker's g.f. by R. J. Mathar, Aug 06 2013
Offset changed from 1 to 0 and a(0)=0 added by Vincenzo Librandi, Feb 19 2014

A178465 Expansion of -2*x^2*(-3-2*x+x^2-x^3-2*x^4+x^5) / ( (1+x)^2*(x-1)^4 ).

Original entry on oeis.org

0, 0, 6, 16, 36, 66, 114, 176, 264, 370, 510, 672, 876, 1106, 1386, 1696, 2064, 2466, 2934, 3440, 4020, 4642, 5346, 6096, 6936, 7826, 8814, 9856, 11004, 12210, 13530, 14912, 16416, 17986, 19686, 21456, 23364, 25346, 27474, 29680, 32040, 34482
Offset: 0

Views

Author

Sean A. Irvine, Mar 23 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 2x^2 (3 + 2x - x^2 + x^3 + 2x^4 - x^5)/((1 + x)^2 (x - 1)^4), {x, 0, 42}], x] (* Robert G. Wilson v, Feb 17 2014 *)
  • Python
    def A178465(n): return n+(m:=n&1)+(n*(n**2-m)>>1) if n != 1 else 0 # Chai Wah Wu, Aug 30 2022

Formula

For n even, a(n) = n*(2+n^2)/2 = A061804(n/2). For n>1 and odd, a(n)=(n+1)*(n^2-n+2)/2 = 2*A212133((n+1)/2).
a(n) = (2-2*(-1)^n+(3+(-1)^n)*n+2*n^3)/4 for n>1. [Colin Barker, Feb 18 2013]

Extensions

Discrepancy with A018808 resolved. David W. Wilson, Aug 05 2013
First line of formulas corrected. R. J. Mathar, Aug 05 2013
Prepended a(0)=0, Joerg Arndt, Feb 19 2014
Showing 1-2 of 2 results.