cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187066 Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n=2*r+p_i, and define a(-2)=0. Then, a(n)=a(2*r+p_i) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt(2*cos(Pi/7)).

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 1, 3, 5, 4, 5, 9, 14, 14, 19, 28, 42, 47, 66, 89, 131, 155, 221, 286, 417, 507, 728, 924, 1341, 1652, 2380, 2993, 4334, 5373, 7753, 9707, 14041, 17460, 25213, 31501, 45542, 56714, 81927, 102256, 147798, 184183
Offset: 0

Views

Author

L. Edson Jeffery, Mar 09 2011

Keywords

Comments

(Start) See A187067 for supporting theory. Define the matrix
U_1= (0 1 0)
(1 0 1)
(0 1 1).
Let r>=0 and M=(m_(i,j))=(U_1)^r, i,j=1,2,3. Let B_r be the r-th "block" defined by B_r={a(2*r-2),a(2*r),a(2*r+1)} with a(-2)=0. Note that B_r-B_(r-1)-2*B_(r-2)+B_(r-3)={0,0,0}, with B_0={a(-2),a(0),a(1)}={0,1,0}. Let p={p_1,p_2,p_3}=(-2,0,1) and n=2*r+p_i. Then a(n)=a(2*r+p_i)=m_(i,2), where M=(m_(i,j))=(U_1)^r was defined above. Hence the block B_r corresponds component-wise to the second column of M, and a(n)=m_(i,2) gives the quantity of H_(7,2,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Combining blocks A_r, B_r and C_r, from A187065, this sequence and A187067, respectively, as matrix columns [A_r,B_r,C_r] generates the matrix (U_1)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r),B_(-r),C_(-r)]=(U_1)^(-r) of (U_1)^r. Therefore, the three sequences need not be causal.
Since a(2*r-2)=a(2*(r-1)) for all r, this sequence arises by concatenation of second-column entries m_(2,2) and m_(3,2) from successive matrices M=(U_1)^r.

Examples

			Suppose r=3. Then
B_r = B_3 = {a(2*r-2),a(2*r),a(2*r+1)}={a(4),a(6),a(7)} = {2,1,3},
corresponding to the entries in the third column of
M = (U_2)^3 = (0 2 1)
              (2 1 3)
              (1 3 3).
Choose i=2 and set n=2*r+p_i. Then a(n) = a(2*r+p_i) = a(6+0) = a(6) = 1, which equals the entry in row 2 and column 2 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,2) = 1 H_(7,2,0) tiles.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,2,0,-1},{1,0,0,1,2,1},50] (* Harvey P. Dale, Aug 16 2012 *)
    CoefficientList[Series[(1 - x^2 + x^3)/(1 - x^2 - 2*x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x^2+x^3)/(1-x^2-2*x^4+x^6)) \\ G. C. Greubel, Oct 20 2017

Formula

Recurrence: a(n) = a(n-2)+2*a(n-4)-a(n-6).
a(2*n) = A052547(n), a(2n+1) = A006053(n+1).
G.f.: (1-x^2+x^3)/(1-x^2-2*x^4+x^6).
Closed-form: a(n) = -(1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[2*(-1)^(k-1)*cos(k*Pi/7)], X_k = (w_k)^5-(w_k)^3+(w_k)^2 and Y_k = -(w_k)^5+(w_k)^3+(w_k)^2, k=1,2,3.