cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187069 Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 4, 5, 9, 11, 20, 25, 45, 56, 101, 126, 227, 283, 510, 636, 1146, 1429, 2575, 3211, 5786, 7215, 13001, 16212, 29213, 36428, 65641, 81853, 147494, 183922, 331416, 413269, 744685, 928607, 1673292, 2086561, 3759853, 4688460, 8448313, 10534874
Offset: 0

Views

Author

L. Edson Jeffery, Mar 06 2011

Keywords

Comments

See A187070 for supporting theory. Define the matrix
U_2 = (0 0 1)
(0 1 1)
(1 1 1).
Let r>=0, and let B_r be the r-th "block" defined by B_r={a(2*r),a(2*r+1),a(2*r+2)}. Note that B_r-2*B_(r-1)-B_(r-2)+B_(r-3)={0,0,0}. Let n=2*r+i-1 and M=(m_(i,j))=(U_2)^r. Then B_r corresponds component-wise to the second column of M, and a(n)=a(2*r+i-1)=m_(i,2) gives the quantity of H_(7,2,0) tiles that should appear in a subdivided H_(7,i,r) tile.
Since a(2*r+2)=a(2*(r+1)) for all r, this sequence arises by concatenation of second-column entries m_(1,2) and m_(2,2) from successive matrices M=(U_2)^r.

Examples

			Suppose r=3.
Then B_r = B_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {2,4,5}, corresponding to the entries in the second column of
  M = (U_2)^3 = (1 2 3)
                (2 4 5)
                (3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,2) = 4. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,2) = 4 H_(7,2,0) tiles.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(1 - x^2 + x^3 - x^4)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
    LinearRecurrence[{0,2,0,1,0,-1},{0,1,0,1,1,2},50] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6))) \\ G. C. Greubel, Oct 20 2017

Formula

Recurrence: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^4-(w_k)^2+w_k-1 and Y_k = (w_k)^4+(w_k)^2-w_k-1, k=1,2,3.
a(2*n) = A006054(n), a(2*n+3) = A052534(n).