A187069 Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).
0, 1, 0, 1, 1, 2, 2, 4, 5, 9, 11, 20, 25, 45, 56, 101, 126, 227, 283, 510, 636, 1146, 1429, 2575, 3211, 5786, 7215, 13001, 16212, 29213, 36428, 65641, 81853, 147494, 183922, 331416, 413269, 744685, 928607, 1673292, 2086561, 3759853, 4688460, 8448313, 10534874
Offset: 0
Examples
Suppose r=3. Then B_r = B_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {2,4,5}, corresponding to the entries in the second column of M = (U_2)^3 = (1 2 3) (2 4 5) (3 5 6). Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,2) = 4. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,2) = 4 H_(7,2,0) tiles.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1,0,-1).
Programs
-
Mathematica
CoefficientList[Series[x*(1 - x^2 + x^3 - x^4)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *) LinearRecurrence[{0,2,0,1,0,-1},{0,1,0,1,1,2},50] (* Harvey P. Dale, Dec 16 2017 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6))) \\ G. C. Greubel, Oct 20 2017
Formula
Recurrence: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^4-(w_k)^2+w_k-1 and Y_k = (w_k)^4+(w_k)^2-w_k-1, k=1,2,3.
Comments