A187100 Expansion of q * (psi(-q^3) * psi(q^6)) / (psi(-q) * phi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
1, 3, 7, 15, 30, 57, 104, 183, 313, 522, 852, 1365, 2150, 3336, 5106, 7719, 11538, 17067, 25004, 36306, 52280, 74700, 105960, 149277, 208951, 290706, 402127, 553224, 757158, 1031166, 1397744, 1886151, 2534316, 3391254, 4520112, 6002007, 7940846
Offset: 1
Keywords
Examples
q + 3*q^2 + 7*q^3 + 15*q^4 + 30*q^5 + 57*q^6 + 104*q^7 + 183*q^8 + 313*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Johannes Blümlein, Iterative Non-iterative Integrals in Quantum Field Theory, arXiv:1808.08128 [hep-th], 2018.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1-x^(2*k))^2 * (1-x^(3*k)) * (1-x^(12*k))^3 / ((1-x^k)^3 * (1-x^(4*k)) * (1-x^(6*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) a[n_] := SeriesCoefficient[(EllipticTheta[2, 0, I*q^(3/2)]* EllipticTheta[2, 0, q^3])/(2*EllipticTheta[2, 0, I*q^(1/2)]* EllipticTheta[3, 0, -q]), {q, 0, n}]; Table[a[n], {n, 50}] (* G. C. Greubel, Nov 27 2017 *) eta[q_] := q^(1/24)*QPochhammer[q]; A:= eta[q^2]^2*eta[q^3]*eta[q^12]^3/ (eta[q]^3*eta[q^4]*eta[q^6]^2); a:=CoefficientList[Series[A/q, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^3 / (eta(x + A)^3 * eta(x^4 + A) * eta(x^6 + A)^2), n))}
Formula
Expansion of eta(q^2)^2 * eta(q^3) * eta(q^12)^3 / (eta(q)^3 * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 3, 1, 2, 2, 3, 2, 3, 2, 2, 1, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/12) * 1/f(t) where q = exp(2 Pi i t).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Comments