cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187215 Sum of the elements of the absolute difference table of the divisors of n.

Original entry on oeis.org

1, 4, 6, 11, 10, 21, 14, 26, 25, 31, 22, 52, 26, 45, 54, 57, 34, 82, 38, 82, 72, 73, 46, 119, 71, 87, 90, 108, 58, 161, 62, 120, 108, 115, 134, 181, 74, 129, 126, 193, 82, 221, 86, 172, 218, 157, 94, 252, 141, 190, 162, 204, 106, 285, 202, 233
Offset: 1

Views

Author

Omar E. Pol, Aug 02 2011

Keywords

Comments

First differs from A273103 at a(14). - Omar E. Pol, May 15 2016

Examples

			For n = 14 the divisors of 14 are 1, 2, 7, 14, and the absolute difference triangle of the divisors is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . . 2
The sum of all elements of the triangle is 1 + 2 + 7 + 14 + 1 + 5 + 7 + 4 + 2 + 2 = 45, so a(14) = 45.
		

Crossrefs

Row sums of triangle A187207.

Programs

  • Maple
    with(numtheory):
    DD:= l-> [seq(abs(l[i]-l[i-1]), i=2..nops(l))]:
    a:= proc(n) local l;
          l:= sort([divisors(n)[]], `>`);
          add(j, j=[seq((DD@@i)(l)[], i=0..nops(l)-1)]);
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 02 2011
  • Mathematica
    Table[Total@ Flatten@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 56}] (* Michael De Vlieger, May 18 2016 *)

Formula

a(n) = 2n, if n is prime.
a(2^k) = A125128(k+1), k >= 0. - Omar E. Pol, May 15 2016

Extensions

More terms from Alois P. Heinz, Aug 02 2011
Edited by Omar E. Pol, May 19 2016