cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187277 Let S denote the palindromes in the language {0,1,2,...,n-1}*; a(n) = number of words of length 4 in the language SS.

Original entry on oeis.org

1, 16, 57, 136, 265, 456, 721, 1072, 1521, 2080, 2761, 3576, 4537, 5656, 6945, 8416, 10081, 11952, 14041, 16360, 18921, 21736, 24817, 28176, 31825, 35776, 40041, 44632, 49561, 54840, 60481, 66496, 72897, 79696, 86905, 94536, 102601, 111112, 120081, 129520, 139441, 149856, 160777, 172216, 184185
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2011

Keywords

Crossrefs

Row 4 of A284873.

Programs

  • Magma
    [2*n^3 + n^2 - 2*n: n in [1..50]]; // G. C. Greubel, Jul 25 2018
    
  • Maple
    Using the Maple code from A007055: [seq(F(b,4),b=1..50)];
  • Mathematica
    Array[# (2 #^2 + # - 2) &, 45] (* or *)
    Rest@ CoefficientList[Series[-x (x^2 - 12 x - 1)/(x - 1)^4, {x, 0, 45}], x] (* Michael De Vlieger, Oct 10 2017 *)
  • PARI
    a(n) = 2*n^3 + n^2 - 2*n; \\ Andrew Howroyd, Oct 10 2017
    
  • Python
    def A187277(n): return n*(n*((n<<1)|1)-2) # Chai Wah Wu, Feb 19 2024

Formula

From Colin Barker, Jul 24 2013: (Start) (Conjectured formulas; later proven)
a(n) = n*(2*n^2 +n -2).
G.f.: x*(1 +12*x - x^2)/(x-1)^4. (End)
The above conjecture is true: A284873(4, n) evaluates to the same polynomial. - Andrew Howroyd, Oct 10 2017