A187277 Let S denote the palindromes in the language {0,1,2,...,n-1}*; a(n) = number of words of length 4 in the language SS.
1, 16, 57, 136, 265, 456, 721, 1072, 1521, 2080, 2761, 3576, 4537, 5656, 6945, 8416, 10081, 11952, 14041, 16360, 18921, 21736, 24817, 28176, 31825, 35776, 40041, 44632, 49561, 54840, 60481, 66496, 72897, 79696, 86905, 94536, 102601, 111112, 120081, 129520, 139441, 149856, 160777, 172216, 184185
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Table 1.
Crossrefs
Row 4 of A284873.
Programs
-
Magma
[2*n^3 + n^2 - 2*n: n in [1..50]]; // G. C. Greubel, Jul 25 2018
-
Maple
Using the Maple code from A007055: [seq(F(b,4),b=1..50)];
-
Mathematica
Array[# (2 #^2 + # - 2) &, 45] (* or *) Rest@ CoefficientList[Series[-x (x^2 - 12 x - 1)/(x - 1)^4, {x, 0, 45}], x] (* Michael De Vlieger, Oct 10 2017 *)
-
PARI
a(n) = 2*n^3 + n^2 - 2*n; \\ Andrew Howroyd, Oct 10 2017
-
Python
def A187277(n): return n*(n*((n<<1)|1)-2) # Chai Wah Wu, Feb 19 2024
Formula
From Colin Barker, Jul 24 2013: (Start) (Conjectured formulas; later proven)
a(n) = n*(2*n^2 +n -2).
G.f.: x*(1 +12*x - x^2)/(x-1)^4. (End)
The above conjecture is true: A284873(4, n) evaluates to the same polynomial. - Andrew Howroyd, Oct 10 2017