A187393 a(n) = floor(r*n), where r = 4 + sqrt(8); complement of A187394.
6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 75, 81, 88, 95, 102, 109, 116, 122, 129, 136, 143, 150, 157, 163, 170, 177, 184, 191, 198, 204, 211, 218, 225, 232, 238, 245, 252, 259, 266, 273, 279, 286, 293, 300, 307, 314, 320, 327, 334, 341, 348, 355, 361, 368, 375, 382, 389, 396, 402, 409, 416, 423, 430, 437, 443, 450, 457, 464, 471, 477
Offset: 1
Keywords
Links
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Programs
-
Magma
[Floor (n*(4+Sqrt(8))): n in [1..100]]; // Vincenzo Librandi, Oct 23 2014
-
Mathematica
r=4+8^(1/2); s=4-8^(1/2); Table[Floor[r*n],{n,1,80}] (* A187393 *) Table[Floor[s*n],{n,1,80}] (* A187394 *)
-
Python
from sympy import integer_nthroot def A187393(n): return 4*n+integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
Formula
a(n) = floor(r*n), where r = 4 + sqrt(8).
Comments