cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187393 a(n) = floor(r*n), where r = 4 + sqrt(8); complement of A187394.

Original entry on oeis.org

6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 75, 81, 88, 95, 102, 109, 116, 122, 129, 136, 143, 150, 157, 163, 170, 177, 184, 191, 198, 204, 211, 218, 225, 232, 238, 245, 252, 259, 266, 273, 279, 286, 293, 300, 307, 314, 320, 327, 334, 341, 348, 355, 361, 368, 375, 382, 389, 396, 402, 409, 416, 423, 430, 437, 443, 450, 457, 464, 471, 477
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2011

Keywords

Comments

A187393 and A187394 are the Beatty sequences for r = 4 + sqrt(8) and s = 4 - sqrt(8); 1/r + 1/s = 1.
Let u = 1 + sqrt(2) and v = -1 + sqrt(2). Let U = {h*u, h >= 1} and V = {k*v, k >= 1}. Then A187393(n) is the position of n*u in the ordered union of U and V, and A187394 is the position of n*v. - Clark Kimberling, Oct 21 2014

Crossrefs

Cf. A187394.
A bisection of A001952.

Programs

  • Magma
    [Floor (n*(4+Sqrt(8))): n in [1..100]]; // Vincenzo Librandi, Oct 23 2014
    
  • Mathematica
    r=4+8^(1/2); s=4-8^(1/2);
    Table[Floor[r*n],{n,1,80}]  (* A187393 *)
    Table[Floor[s*n],{n,1,80}]  (* A187394 *)
  • Python
    from sympy import integer_nthroot
    def A187393(n): return 4*n+integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(r*n), where r = 4 + sqrt(8).