cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A187394 a(n) = floor(s*n), where s = 4 - sqrt(8); complement of A187393.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 117
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2011

Keywords

Comments

A187393 and A187394 are the Beatty sequences based on r = 4 + sqrt(8) and s = 4 - sqrt(8); 1/r + 1/s = 1.
Let u = 1 + sqrt(2) and v = -1 + sqrt(2). Let U = {h*u, h >= 1} and V = {k*v, k >= 1}. Then A187393(n) is the position of n*u in the ordered union of U and V, and A187394 is the position of n*v. - Clark Kimberling, Oct 21 2014

Crossrefs

Cf. A187393.

Programs

  • Magma
    [Floor (n*(4-Sqrt(8))): n in [0..100]]; // Vincenzo Librandi, Oct 23 2014
    
  • Mathematica
    r=4+8^(1/2); s=4-8^(1/2);
    Table[Floor[r*n],{n,1,80}]  (* A187393 *)
    Table[Floor[s*n],{n,1,80}]  (* A187394 *)
  • Python
    from sympy import integer_nthroot
    def A187394(n): return 4*n-1-integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(s*n), where s = 4 - sqrt(8).

A001952 A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).

Original entry on oeis.org

3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, 54, 58, 61, 64, 68, 71, 75, 78, 81, 85, 88, 92, 95, 99, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 139, 143, 146, 150, 153, 157, 160, 163, 167, 170, 174, 177, 180, 184, 187, 191, 194, 198
Offset: 1

Views

Author

Keywords

Comments

It appears that the distance between the a(n)-th triangular number and the nearest square is greater than floor(a(n)/2). - Ralf Stephan, Sep 14 2013
A080764(a(n)) = 0. - Reinhard Zumkeller, Jul 03 2015

References

  • Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A001951; equals A001951(n)+2*n.
A bisection of A094077.
Bisection: A187393, A342280.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021

Programs

A342280 a(n) = A001952(2*n+1).

Original entry on oeis.org

3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, 78, 85, 92, 99, 105, 112, 119, 126, 133, 139, 146, 153, 160, 167, 174, 180, 187, 194, 201, 208, 215, 221, 228, 235, 242, 249, 256, 262, 269, 276, 283, 290, 297, 303, 310, 317, 324, 331, 338, 344, 351, 358, 365, 372
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2021

Keywords

Crossrefs

Bisection of A001952.
Cf. A187393.

Programs

  • Python
    from sympy import integer_nthroot
    def A342280(n): return 4*n+2+integer_nthroot(8*n*(n+1)+2,2)[0] # Chai Wah Wu, Mar 16 2021
Showing 1-3 of 3 results.