A187394 a(n) = floor(s*n), where s = 4 - sqrt(8); complement of A187393.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 117
Offset: 1
Keywords
Links
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
Cf. A187393.
Programs
-
Magma
[Floor (n*(4-Sqrt(8))): n in [0..100]]; // Vincenzo Librandi, Oct 23 2014
-
Mathematica
r=4+8^(1/2); s=4-8^(1/2); Table[Floor[r*n],{n,1,80}] (* A187393 *) Table[Floor[s*n],{n,1,80}] (* A187394 *)
-
Python
from sympy import integer_nthroot def A187394(n): return 4*n-1-integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
Formula
a(n) = floor(s*n), where s = 4 - sqrt(8).
Comments