A187497 Let i be in {1,2,3,4} and r>=0 an integer. Let p ={p_1,p_2,p_3,p_4} = {-3,0,1,2}, n=3*r+p_i and define a(-3)=0. Then a(n)=a(3*r+p_i) gives the number of H_(9,3,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)).
0, 1, 0, 1, 0, 1, 0, 2, 1, 3, 1, 3, 1, 6, 4, 9, 5, 10, 6, 19, 15, 28, 21, 34, 27, 62, 55, 90, 82, 117, 109, 207, 199, 297, 308, 406, 417, 703, 714, 1000, 1131, 1417, 1548, 2417, 2548, 3417, 4096, 4965, 5644, 8382, 9061, 11799, 14705
Offset: 0
References
- L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,3,0,0,1).
Programs
-
Mathematica
CoefficientList[Series[x*(1+x^2-x^3+x^4-x^5-x^6+x^9-x^10)/(1-x^3-3*x^6+ 2*x^9+ x^12),{x,0,70}],x] (* or *) LinearRecurrence[{0,0,0,0,0,3,0,0,1},{0,1,0,1,0,1,0,2,1},70] (* Harvey P. Dale, Feb 10 2013 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x*(1 +x^2 -x^3 +x^4 -x^5 -x^6 +x^9 -x^10)/(1 -x^3 -3*x^6 +2*x^9 +x^12))) \\ G. C. Greubel, Nov 28 2017
Formula
G.f.: x*(1 +x^2 -x^3 +x^4 -x^5 -x^6 +x^9 -x^10)/(1 -x^3 -3*x^6 +2*x^9 +x^12).
a(0)=0, a(1)=1, a(2)=0, a(3)=1, a(4)=0, a(5)=1, a(6)=0, a(7)=2, a(8)=1, a(n) = 3*a(n-6) + a(n-9). - Harvey P. Dale, Feb 10 2013
Comments