cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187565 Numbers divisible by at least eight of their digits, different and >1.

Original entry on oeis.org

1234759680, 1234857960, 1234895760, 1234958760, 1235487960, 1235679480, 1235976840, 1236795840, 1237569480, 1237589640, 1237594680, 1237695480, 1237894560, 1238549760, 1238574960, 1238597640, 1238975640, 1239547680, 1239567840, 1239756840, 1239784560, 1239847560, 1239857640, 1243579680, 1243589760, 1243879560, 1243957680, 1245378960, 1245973680, 1245983760
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

First 11460 terms are pandigital numbers (A050278).
Asymptotic density 1/2520 = 0.000396.... - Charles R Greathouse IV, Mar 11 2011
11460 terms up to 10^10, 299275 terms up to 10^11, 6224794 terms up to 10^12. - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Subsequence of A187551 (numbers divisible by at least seven ...).

Programs

  • Mathematica
    numdig = 8; Select[Range[1245983760], Length[(u = Union[Select[IntegerDigits[#], #1 > 1 &]])] >= numdig && Plus @@ (Boole@Divisible[#, u]) >= numdig &] (* Amiram Eldar, Aug 30 2020 *)
  • PARI
    s(n) = my(res=Set(digits(n)));select(x->x>1,res)
    is(n) = my(d=s(n));if(#d < 8, return(0)); sum(i=1, #d, n%d[i]==0) >= 8 \\ David A. Corneth, Aug 30 2020