cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187659 Convolution of the (signless) central Stirling numbers of the first kind (A187646) and the central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 2, 19, 333, 8862, 322885, 15061381, 858280605, 57766424400, 4479377168841, 392785285842806, 38393983653735732, 4136603248470746422, 486806030644218961182, 62109988002922704031388, 8537900524822110186179616
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(abs(combinat[stirling1](2*k,k))*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} s(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014