A187662 Convolution of the (signless) central Lah numbers (A187535) and the central Stirling numbers of the second kind (A007820).
1, 3, 45, 1340, 62133, 3926607, 313159138, 30077004204, 3373855596485, 432604296358341, 62396125789568633, 9997677582465775336, 1761777732880595653932, 338625441643226149909356, 70500059235176885929427760
Offset: 0
Programs
-
Maple
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; seq(sum(L(k)*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
-
Mathematica
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
-
Maxima
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
Formula
a(n) = Sum_{k=0..n} Lah(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ 2^(4*n) * n^n / (exp(n) * sqrt(2*Pi*n)). - Vaclav Kotesovec, May 21 2014