A187664 Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
1, 3, 49, 1483, 67615, 4173203, 326208269, 30880075203, 3430574739759, 437145190334383, 62803806114813801, 10038354053796477099, 1766255133182030548351, 339166069936077378326187, 70571377417819411767223541
Offset: 0
Programs
-
Maple
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; seq(sum(L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
Mathematica
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
-
Maxima
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
Formula
a(n) = Sum_{k=0..n} Lah(2*k,k)*s(2*n-2*k,n-k).
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, May 30 2025