cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187665 Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 47, 1440, 67533, 4280175, 341307292, 32750424588, 3670267277749, 470237282353989, 67781221867781615, 10855095004543985756, 1912103925425230231884, 367398970712627913234708, 76469792506315229551855080
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Programs

  • Maple
    A048993 := proc(n,k) combinat[stirling2](n, k) ; end proc:
    A187535 := proc(n) if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
    A187665 := proc(n) add(binomial(n,k)*A187535(k)*A048993(2*n-2*k,n-k), k=0..n) ; end proc:
    seq(A187665(n),n=0..10)  ; # R. J. Mathar, Mar 28 2011
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[Binomial[n,k]L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(binomial(n,k)*L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A187535(k)* A048993(2n-2k,n-k).
a(n) ~ c * 16^n * (n-1)!, where c = (1/Pi) * Sum_{k>=0} abs(Stirling2(2*k,k)) / (k! * 2^(4*k+1)) = 0.172113078600558193773... - Vaclav Kotesovec, Jul 05 2021, updated May 30 2025