A187665 Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.
1, 3, 47, 1440, 67533, 4280175, 341307292, 32750424588, 3670267277749, 470237282353989, 67781221867781615, 10855095004543985756, 1912103925425230231884, 367398970712627913234708, 76469792506315229551855080
Offset: 0
Programs
-
Maple
A048993 := proc(n,k) combinat[stirling2](n, k) ; end proc: A187535 := proc(n) if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc: A187665 := proc(n) add(binomial(n,k)*A187535(k)*A048993(2*n-2*k,n-k), k=0..n) ; end proc: seq(A187665(n),n=0..10) ; # R. J. Mathar, Mar 28 2011
-
Mathematica
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[Binomial[n,k]L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
-
Maxima
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(binomial(n,k)*L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
Formula
a(n) ~ c * 16^n * (n-1)!, where c = (1/Pi) * Sum_{k>=0} abs(Stirling2(2*k,k)) / (k! * 2^(4*k+1)) = 0.172113078600558193773... - Vaclav Kotesovec, Jul 05 2021, updated May 30 2025