cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
    seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
a(n) ~ c * 2^(4*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)), where c = Sum_{k>=0} abs(Stirling1(2*k,k)) / (k! * 2^(4*k+1)) = 0.550990257867992515027936630097897... - Vaclav Kotesovec, May 30 2025