A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0
Programs
-
Maple
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
Mathematica
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
-
Maxima
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
a(n) ~ c * 2^(4*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)), where c = Sum_{k>=0} abs(Stirling1(2*k,k)) / (k! * 2^(4*k+1)) = 0.550990257867992515027936630097897... - Vaclav Kotesovec, May 30 2025