cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356537 Numbers k whose binary expansion is a substring of the binary expansion of binomial(k,2).

Original entry on oeis.org

3, 5, 9, 11, 17, 33, 44, 50, 58, 65, 129, 257, 396, 452, 513, 581, 864, 971, 1025, 1139, 1843, 1881, 1914, 2049, 2541, 2676, 2929, 3130, 4097, 4596, 5254, 6621, 7010, 7111, 8193, 10771, 11140, 12655, 16385, 17090, 19135, 19371, 19580, 20985, 27117, 27845, 32769, 35272, 44278, 46779, 56069
Offset: 1

Views

Author

Scott R. Shannon, Aug 11 2022

Keywords

Comments

All numbers of the form 2^m+1, m>=1, are in the sequence. There are 152 terms below 100 million.

Examples

			9 is a term as 9 = 1001_2 and binomial(9,2) = 9!/(2!7!) = 36 = 100100_2 and "100100" contains "1001" as a substring.
		

Crossrefs

Programs

  • Mathematica
    kmax=56100; a={}; For[k=1, k<=kmax, k++, If[StringContainsQ[ToString[FromDigits[IntegerDigits[Binomial[k, 2], 2]]], ToString[FromDigits[IntegerDigits[k,2]]]], AppendTo[a, k]]]; a (* Stefano Spezia, Aug 11 2022 *)
  • PARI
    str(k) = Str(fromdigits(binary(k)));
    isok(k) = #strsplit(str(binomial(k,2)), str(k)) > 1; \\ Michel Marcus, Aug 11 2022
    
  • Python
    from math import comb
    def ok(n): return n > 0 and str(bin(n)[2:]) in str(bin(comb(n, 2))[2:])
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Aug 11 2022
Showing 1-1 of 1 results.