cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187753 Number of different ways to divide an n X 5 rectangle into subsquares, considering only the list of parts.

Original entry on oeis.org

1, 1, 3, 5, 9, 11, 20, 26, 36, 48, 64, 80, 106, 128, 160, 195, 238, 281, 340, 397, 467, 544, 633, 724, 838, 950, 1083, 1226, 1385, 1550, 1745, 1942, 2165, 2402, 2663, 2933, 3242, 3555, 3902, 4270, 4667, 5079, 5539, 6007, 6518, 7055, 7631, 8227, 8880, 9547
Offset: 0

Views

Author

Alois P. Heinz, Apr 17 2013

Keywords

Examples

			a(4) = 9 because there are 9 ways to divide a 4 X 5 rectangle into subsquares, considering only the list of parts: [20(1 X 1)], [16(1 X 1), 1(2 X 2)], [12(1 X 1), 2(2 X 2)], [11(1 X 1), 1(3 X 3)], [8(1 X 1), 3(2 X 2)], [7(1 X 1), 1(2 X 2), 1(3 X 3)], [4(1 X 1), 4(2 X 2)], [4(1 X 1), 1(4 X 4)], [3(1 X 1), 2(2 X 2), 1(3 X 3)].  There is no way to divide this rectangle into [2(1 X 1), 2(3 X 3)].
		

Crossrefs

Column k=5 of A224697.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x^2+x^3+3*x^4-x^5+4*x^6-x^7+x^8-x^9)/((1-x)^5*(1+x)^2*(1+x^2)*(1-x +x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4)))); // Bruno Berselli, Apr 17 2013
  • Maple
    gf:= (x^9-x^8+x^7-4*x^6+x^5-3*x^4-x^3-2*x^2-1)/
         (x^19-x^18-x^16+2*x^12+x^10-x^9-2*x^7+x^3+x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..60);

Formula

G.f.: (x^9 - x^8 + x^7 - 4*x^6 + x^5 - 3*x^4 - x^3 - 2*x^2 - 1) / (x^19 - x^18 - x^16 + 2*x^12 + x^10 - x^9 - 2*x^7 + x^3 + x - 1).