A187763 Number of common terms in consecutive Collatz trajectories.
1, 2, 3, 3, 6, 7, 4, 4, 7, 7, 7, 7, 10, 9, 5, 5, 13, 16, 8, 5, 5, 9, 7, 7, 11, 9, 9, 16, 9, 17, 5, 5, 14, 9, 9, 19, 16, 22, 9, 9, 5, 5, 16, 14, 9, 17, 7, 7, 16, 20, 12, 9, 12, 106, 9, 20, 16, 20, 9, 17, 20, 95, 5, 5, 16, 23, 14, 12, 9, 15, 9, 9, 9, 5, 5, 20
Offset: 1
Keywords
Examples
. | Rows in A070165 (trajectories) a(1) = #{1} = 1; | 1 a(2) = #{2,1} = 2; | 2,1 a(3) = #{4,2,1} = 3; | 3,10,5,16,8,4,2,1 a(4) = #{4,2,1} = 3; | 4,2,1 a(5) = #{5,16,8,4,2,1} = 6; | 5,16,8,4,2,1 a(6) = #{10,5,16,8,4,2,1} = 7; | 6,3,10,5,16,8,4,2,1 a(7) = #{8,4,2,1} = 4; | 7,22,11,34,17,52,26,13,40,20,10,5,.. a(8) = #{8,4,2,1} = 4; | 8,4,2,1 a(9) = #{10,5,16,8,4,2,1} = 7; | 9,28,14,7,22,11,34,17,52,26,13,40,.. a(10) = #{10,5,16,8,4,2,1} = 7; | 10,5,16,8,4,2,1 a(11) = #{10,5,16,8,4,2,1} = 7; | 11,34,17,52,26,13,40,20,10,5,16,8,4,.. a(12) = #{10,5,16,8,4,2,1} = 7. | 12,6,3,10,5,16,8,4,2,1 . | 13,40,20,10,5,16,8,4,2,1 .
Links
Programs
-
Haskell
import Data.List (intersect) a187763 n = a187763_list !! (n-1) a187763_list = map length $ zipWith intersect a070165_tabf $ tail a070165_tabf
-
Mathematica
coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; Table[Length[Intersection[coll[n],coll[n+1]]],{n,76}] (* Jayanta Basu, May 28 2013 *)
Comments