cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187767 Number of bicolored cyclic patterns n X n.

Original entry on oeis.org

0, 2, 3, 10, 15, 35, 63, 138, 255, 527, 1023, 2083, 4095, 8255, 16383, 32906, 65535, 131327, 262143, 524815, 1048575, 2098175, 4194303, 8390691, 16777215, 33558527, 67108863, 134225983, 268435455, 536887295, 1073741823, 2147516554, 4294967295, 8590000127, 17179869183
Offset: 1

Views

Author

Giovanni Resta, Jan 04 2013

Keywords

Comments

A bicolored cyclic pattern is a 0-1 n x n matrix where the j-th row is equal to the first row rotated to the left by (j-1)*k places, with 1 <= k <= n a parameter. For example, with first row = 0110 we have
.
. (k=1) 0 1 1 0 (k=2) 0 1 1 0 (k=3) 0 1 1 0 (k=4) 0 1 1 0
. 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
. 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
. 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
The (2^n-2)*n matrices so obtained are reduced considering equivalent those obtained exchanging 0's and 1's and those which produce the same pattern, apart translation.

Examples

			a(4)=10 is represented below. See Links for more examples.
. 1000 0100 0010 0001 0101 1010 1001 0110 1100 0011
. 0100 0001 0100 0001 0101 0101 1100 1100 0011 0011
. 0010 0100 1000 0001 0101 1010 0110 1001 1100 0011
. 0001 0001 0001 0001 0101 0101 0011 0011 0011 0011
		

Crossrefs

The number of patterns made of vertical stripes only is A056295(n).

Programs

  • Mathematica
    cyPatt[n_]:=Block[{b,c},c[v_,q_:1]:=Table[RotateLeft[v,i q],{i,n}]; b=Union[(First@Union[c@#,c[1-#]])& /@ IntegerDigits[Range[2^n/2-1], 2,n]]; Union@Flatten[Table[c[e,j],{j,n},{e,b}],1]];
    (*count*) a[n_] := Length@cyPatt@n; Print["Seq = ",a/@Range[12]];
    (*show*) showP[p_] := GraphicsGrid@Partition[ArrayPlot/@p,8,8,1,Null];
    showP[cyPatt[6]]
  • PARI
    b(n)=sumdiv(n,d,(d%2)*(moebius(d)*2^(n/d)))/(2*n);
    a(n)=sumdiv(n,d,d*b(d)) - 1; \\ Andrew Howroyd, Jun 02 2017

Formula

a(1) = 0; a(n) = 2^(n-1)-1 if n is odd, 2^(n-1)+a(n/2) if n is even (conjectured).
a(n) = -1 + Sum_{d|n} d*A000048(d). - Andrew Howroyd, Jun 02 2017

Extensions

a(22)-a(35) from Andrew Howroyd, Jun 02 2017