A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.
4, 3, 9, 9, 2, 4, 0, 1, 2, 5, 7, 1, 0, 2, 5, 3, 0, 4, 0, 4, 0, 9, 0, 3, 3, 9, 1, 4, 3, 4, 5, 4, 4, 7, 6, 4, 7, 9, 8, 0, 8, 5, 4, 0, 7, 9, 4, 0, 1, 1, 9, 8, 5, 7, 6, 5, 3, 4, 9, 3, 5, 4, 5, 0, 2, 2, 6, 3, 5, 4, 0, 0, 4, 2, 0, 4, 7, 6, 4, 6, 0, 5, 3, 7, 9, 8, 6
Offset: 0
Examples
0.43992401257102530404090339143454476479808540794...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296
- D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1799, (this constant was computed by David Broadhurst in November 1999)
- David Broadhurst, Resurgent Integer Sequences, Rutgers Experimental Math Seminar, Feb 06 2025; Slides.
- Amirmohammad Farzaneh, Mihai-Alin Badiu, and Justin P. Coon, On Random Tree Structures, Their Entropy, and Compression, arXiv:2309.09779 [cs.IT], 2023.
- Eric Weisstein's World of Mathematics, Rooted Tree
Programs
-
Mathematica
digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)
Comments