cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0

Views

Author

Keywords

Comments

Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox, Apr 29 2003; corrected by Keith Briggs, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
  01:  [ 0 1 2 3 4 5 ]    (((((())))))
  02:  [ 0 1 2 3 4 4 ]    ((((()()))))
  03:  [ 0 1 2 3 4 3 ]    ((((())())))
  04:  [ 0 1 2 3 4 2 ]    ((((()))()))
  05:  [ 0 1 2 3 4 1 ]    ((((())))())
  06:  [ 0 1 2 3 3 3 ]    (((()()())))
  07:  [ 0 1 2 3 3 2 ]    (((()())()))
  08:  [ 0 1 2 3 3 1 ]    (((()()))())
  09:  [ 0 1 2 3 2 3 ]    (((())(())))
  10:  [ 0 1 2 3 2 2 ]    (((())()()))
  11:  [ 0 1 2 3 2 1 ]    (((())())())
  12:  [ 0 1 2 3 1 2 ]    (((()))(()))
  13:  [ 0 1 2 3 1 1 ]    (((()))()())
  14:  [ 0 1 2 2 2 2 ]    ((()()()()))
  15:  [ 0 1 2 2 2 1 ]    ((()()())())
  16:  [ 0 1 2 2 1 2 ]    ((()())(()))
  17:  [ 0 1 2 2 1 1 ]    ((()())()())
  18:  [ 0 1 2 1 2 1 ]    ((())(())())
  19:  [ 0 1 2 1 1 1 ]    ((())()()())
  20:  [ 0 1 1 1 1 1 ]    (()()()()())
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
  • Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
  • D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution), A002861 (rings of these).
Column k=1 of A033185 and A034799; column k=0 of A008295.

Programs

  • Haskell
    import Data.List (genericIndex)
    a000081 = genericIndex a000081_list
    a000081_list = 0 : 1 : f 1 [1,0] where
       f x ys = y : f (x + 1) (y : ys) where
         y = sum (zipWith (*) (map h [1..x]) ys) `div` x
         h = sum . map (\d -> d * a000081 d) . a027750_row
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055
    spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)];
    # a much more efficient method for computing the result with Maple. It uses two procedures:
    a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc:
    a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
    # even more efficient, uses the Euler transform:
    with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
    (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
    ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • Maxima
    g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s);
    r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1);
    Co(n,k):=if k=1  then g(n)  else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k);
    makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
    
  • PARI
    {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
    
  • PARI
    {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    concat([0], A) \\ Joerg Arndt, Apr 17 2014
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def divisor_tuple(n): # cached unordered tuple of divisors
        return tuple(divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
  • Sage
    @CachedFunction
    def a(n):
        if n < 2: return n
        return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
    [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
    
  • Sage
    [0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
    

Formula

G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015

A051491 Decimal expansion of Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/A000081(n).

Original entry on oeis.org

2, 9, 5, 5, 7, 6, 5, 2, 8, 5, 6, 5, 1, 9, 9, 4, 9, 7, 4, 7, 1, 4, 8, 1, 7, 5, 2, 4, 1, 2, 3, 1, 9, 4, 5, 8, 8, 3, 7, 5, 4, 9, 2, 3, 0, 4, 6, 6, 3, 5, 9, 6, 5, 9, 5, 3, 5, 0, 4, 7, 2, 4, 7, 8, 9, 0, 5, 9, 6, 4, 7, 3, 3, 1, 3, 9, 5, 7, 4, 9, 5, 1, 0, 8, 6, 6, 6, 8, 2, 8, 3, 6, 7, 6, 5, 8, 1, 3, 5, 2, 5, 3
Offset: 1

Views

Author

Keywords

Comments

A000055(n) ~ A086308 * A051491^n * n^(-5/2), A000081(n) ~ A187770 * A051491^n * n^(-3/2). - Vaclav Kotesovec, Jan 04 2013
Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 481) has a wrong value of this constant (2.9955765856). - Vaclav Kotesovec, Jan 04 2013

Examples

			2.95576528565199497471481752412319458837549230466359659535...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.

Crossrefs

Programs

  • Mathematica
    digits = 99; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1+Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; RealDigits[alpha, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

A087803 Number of unlabeled rooted trees with at most n nodes.

Original entry on oeis.org

1, 2, 4, 8, 17, 37, 85, 200, 486, 1205, 3047, 7813, 20299, 53272, 141083, 376464, 1011311, 2732470, 7421146, 20247374, 55469206, 152524387, 420807242, 1164532226, 3231706871, 8991343381, 25075077710, 70082143979, 196268698287, 550695545884, 1547867058882
Offset: 1

Views

Author

Hugo Pfoertner, Oct 12 2003

Keywords

Comments

Number of equations (order conditions) that must be satisfied to achieve order n in the construction of a Runge-Kutta method for the numerical solution of an ordinary differential equation. - Hugo Pfoertner, Oct 12 2003

References

  • Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester
  • See link for more references.

Crossrefs

a(n) = Sum_(k=1..n) A000081(k).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 21 2012
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
    Needs["NumericalDifferentialEquationAnalysis`"]
    Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* Peter Luschny, Aug 18 2016 *)
  • PARI
    a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k));
    a(n) = sum(k=1, n, a000081(k)) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    def A087803_list(len):
        a, t = [1], [0,1]
        for n in (1..len-1):
            S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)]
            t.append(sum(S)//n)
            a.append(a[-1]+t[-1])
        return a
    A087803_list(20) # Peter Luschny, Aug 18 2016

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - Vladimir Reshetnikov, Aug 12 2016

Extensions

Corrected and extended by Alois P. Heinz, Aug 21 2012
Renamed (old name is in comments) by Vladimir Reshetnikov, Aug 23 2016

A027852 Number of connected functions on n points with a loop of length 2.

Original entry on oeis.org

0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
Offset: 1

Views

Author

Christian G. Bower, Dec 14 1997

Keywords

Comments

Number of unordered pairs of rooted trees with a total of n nodes.
Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.
Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012
Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014
Number of unicyclic graphs of n nodes with a cycle length of two (in other words, a double edge). - Washington Bomfim, Dec 02 2020

Crossrefs

Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50);  # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
    # second, re-usable version
    A027852 := proc(N::integer)
        local dh, Nprime;
        dh := 0 ;
        for Nprime from 0 to N do
            dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
        end do:
        if type(N,'even') then
            dh := dh+A000081(N/2) ;
        end if;
        dh/2 ;
    end proc: # R. J. Mathar, Mar 06 2017
  • Mathematica
    Needs["Combinatorica`"];nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
    a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
  • PARI
    seq(max_n)= { my(V = f = vector(max_n), i=1,s); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
    if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
    \\ Washington Bomfim, Jul 06 2012 and Dec 01 2020

Formula

G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.
a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014
2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020

Extensions

Edited by Christian G. Bower, Feb 12 2002

A000106 2nd power of rooted tree enumerator; number of linear forests of 2 rooted trees.

Original entry on oeis.org

1, 2, 5, 12, 30, 74, 188, 478, 1235, 3214, 8450, 22370, 59676, 160140, 432237, 1172436, 3194870, 8741442, 24007045, 66154654, 182864692, 506909562, 1408854940, 3925075510, 10959698606, 30665337738, 85967279447, 241433975446, 679192039401, 1913681367936, 5399924120339
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column d=1 of A335362.
Column 2 of A339067.
Cf. A000081, A000242, A000300, A000343, A000395, A027852 (forests of 2 rooted trees).

Programs

  • Haskell
    a000106 n = a000106_list !! (n-2)
    a000106_list = drop 2 $ conv a000081_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 17 2013
  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-1)^2, x=0, n+1), x,n): seq(a(n), n=2..35); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    <Jean-François Alcover, Nov 02 2011 *)
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-1]^2, {x, 0, n}]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Dec 01 2016, after Alois P. Heinz *)

Formula

Self-convolution of rooted trees A000081.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.87984802514205060808180678... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = 2 * A187770. - Vladimir Reshetnikov, Aug 13 2016

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000226 Number of n-node unlabeled connected graphs with one cycle of length 3.

Original entry on oeis.org

1, 1, 3, 7, 18, 44, 117, 299, 793, 2095, 5607, 15047, 40708, 110499, 301541, 825784, 2270211, 6260800, 17319689, 48042494, 133606943, 372430476, 1040426154, 2912415527, 8167992598, 22947778342, 64577555147, 182009003773, 513729375064, 1452007713130
Offset: 3

Views

Author

Keywords

Comments

Number of rooted trees on n+1 nodes where root has degree 3. - Christian G. Bower
Third column of A033185. - Michael Somos, Aug 20 2018
From Washington Bomfim, Dec 22 2020: (Start)
Number of forests of 3 rooted trees with a total of n nodes.
Number of unicyclic graphs with a cycle of length 3 and a total of n nodes.
(End)

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A033185 and A217781.
For n >= 3 a(n) = A217781(n, 3) = A058879(n, n-2) = A033185(n, 3).

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series((B(n-2)(x)^3+ 3*B(n-2)(x)* B(n-2)(x^2)+ 2*B(n-2)(x^3))/6, x=0, n+1), x,n): seq(a(n), n=3..40); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    terms = 30; r[] = 0; Do[r[x] = x *Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms+3}]; A[x_] = (r[x]^3 + 3*r[x]*r[x^2] + 2*r[x^3])/6 + O[x]^(terms+3); Drop[CoefficientList[A[x], x], 3] (* Jean-François Alcover, Nov 23 2011, updated Jan 11 2018 *)
  • PARI
    seq(max_n) = {my(a = f = vector(max_n), s, D); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=3,max_n,s=0;forpart(P=n,D=Set(P);if(#D==3,s+=f[P[1]]*f[P[2]]*f[P[3]];next());
    if(#D==1, s+= binomial(f[P[1]]+2, 3); next());
    if(P[1] == P[2], s += binomial(f[P[1]]+1, 2) * f[P[3]],
    s += binomial(f[P[2]]+1, 2) * f[P[1]]),[1,n],[3,3]); a[n] = s ); a[3..max_n] }; \\ Washington Bomfim, Dec 22 2020

Formula

G.f.: (r(x)^3+3*r(x)*r(x^2)+2*r(x^3))/6 where r(x) is g.f. for rooted trees (A000081).
a(n) = Sum_{j1+2j2+···= n} (Product_{i=1..n} binomial(A000081(i) + j_i -1, j_i)) [(4.27) of [F. Ruskey] with n replaced by n+1]. - Washington Bomfim, Dec 22 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 19 2000

A051573 INVERTi transform of A000081 = [1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486,...].

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 16, 41, 98, 250, 631, 1646, 4285, 11338, 30135, 80791, 217673, 590010, 1606188, 4392219, 12055393, 33206321, 91752211, 254261363, 706465999, 1967743066, 5493195530, 15367129299, 43073007846, 120949992543, 340206026166, 958444631917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; local i; `if`(n<0, -1,
          -add(a(n-i) *b(i+1), i=1..n+1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 17 2013
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := a[n] = If[n < 0, -1, -Sum[a[n-i]*b[i+1], {i, 1, n+1}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148175241..., c = A187770 = 0.4399240125710253040409033914... . - Vaclav Kotesovec, Sep 06 2014

A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.

Original entry on oeis.org

5, 3, 4, 9, 4, 9, 6, 0, 6, 1, 4, 2, 3, 0, 7, 0, 1, 4, 5, 5, 0, 3, 7, 9, 7, 1, 1, 0, 5, 2, 0, 6, 8, 3, 9, 8, 1, 4, 3, 1, 1, 6, 5, 1, 4, 0, 5, 6, 9, 9, 0, 0, 9, 3, 9, 7, 7, 0, 7, 6, 8, 1, 0, 2, 3, 7, 5, 2, 3, 2, 1, 7, 8, 8, 0, 6, 4, 0, 6, 7, 2, 3, 9, 7, 8, 3, 2, 6, 2, 2, 4, 1, 8, 5, 9, 1, 1, 0, 4, 4, 4, 6, 6, 9, 3, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Comments

A000055(n) ~ 0.5349496061 * alpha^n * n^(-5/2), where alpha = 2.95576528565199497... (see A051491). - Vaclav Kotesovec, Jan 04 2013

Examples

			0.53494960614230701455037971105206839814311651405699...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.

Crossrefs

Programs

  • Mathematica
    digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

Extensions

Corrected and extended by Vaclav Kotesovec, Jan 04 2013
More terms from Vaclav Kotesovec, Jun 20 2013 and Dec 26 2020

A000242 3rd power of rooted tree enumerator; number of linear forests of 3 rooted trees.

Original entry on oeis.org

1, 3, 9, 25, 69, 186, 503, 1353, 3651, 9865, 26748, 72729, 198447, 543159, 1491402, 4107152, 11342826, 31408719, 87189987, 242603970, 676524372, 1890436117, 5292722721, 14845095153, 41708679697, 117372283086, 330795842217
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^3, x=0, n+1), x,n): seq(a(n), n=3..29); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    max = 29; b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[ b[n+1-j*k], {j, 1, Quotient[n, k]}]; f[x_] := Sum[ b[k]*x^k, {k, 0, max}]; Drop[ CoefficientList[ Series[f[x]^3, {x, 0, max}], x], 3] (* Jean-François Alcover, Oct 25 2011, after Alois P. Heinz *)

Formula

G.f.: B(x)^3 where B(x) is g.f. of A000081.
a(n) ~ 3 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000300 4th power of rooted tree enumerator: linear forests of 4 rooted trees.

Original entry on oeis.org

1, 4, 14, 44, 133, 388, 1116, 3168, 8938, 25100, 70334, 196824, 550656, 1540832, 4314190, 12089368, 33911543, 95228760, 267727154, 753579420, 2123637318, 5991571428, 16923929406, 47857425416, 135478757308, 383929643780, 1089118243128, 3092612497260
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4, x=0, n+1), x,n): seq(a(n), n=4..30); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[ n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[ b[n + 1 - j*k], {j, 1, n/k}]; bb[n_] := bb[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[ Series[ bb[n - 3]^4, {x, 0, n + 1}], x, n]; Table[a[n], {n, 4, 31}] (* Jean-François Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)

Formula

G.f.: B(x)^4 where B(x) is g.f. of A000081.
a(n) ~ 4 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999
Showing 1-10 of 29 results. Next