cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0

Views

Author

Keywords

Comments

Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox, Apr 29 2003; corrected by Keith Briggs, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
  01:  [ 0 1 2 3 4 5 ]    (((((())))))
  02:  [ 0 1 2 3 4 4 ]    ((((()()))))
  03:  [ 0 1 2 3 4 3 ]    ((((())())))
  04:  [ 0 1 2 3 4 2 ]    ((((()))()))
  05:  [ 0 1 2 3 4 1 ]    ((((())))())
  06:  [ 0 1 2 3 3 3 ]    (((()()())))
  07:  [ 0 1 2 3 3 2 ]    (((()())()))
  08:  [ 0 1 2 3 3 1 ]    (((()()))())
  09:  [ 0 1 2 3 2 3 ]    (((())(())))
  10:  [ 0 1 2 3 2 2 ]    (((())()()))
  11:  [ 0 1 2 3 2 1 ]    (((())())())
  12:  [ 0 1 2 3 1 2 ]    (((()))(()))
  13:  [ 0 1 2 3 1 1 ]    (((()))()())
  14:  [ 0 1 2 2 2 2 ]    ((()()()()))
  15:  [ 0 1 2 2 2 1 ]    ((()()())())
  16:  [ 0 1 2 2 1 2 ]    ((()())(()))
  17:  [ 0 1 2 2 1 1 ]    ((()())()())
  18:  [ 0 1 2 1 2 1 ]    ((())(())())
  19:  [ 0 1 2 1 1 1 ]    ((())()()())
  20:  [ 0 1 1 1 1 1 ]    (()()()()())
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
  • Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
  • D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution), A002861 (rings of these).
Column k=1 of A033185 and A034799; column k=0 of A008295.

Programs

  • Haskell
    import Data.List (genericIndex)
    a000081 = genericIndex a000081_list
    a000081_list = 0 : 1 : f 1 [1,0] where
       f x ys = y : f (x + 1) (y : ys) where
         y = sum (zipWith (*) (map h [1..x]) ys) `div` x
         h = sum . map (\d -> d * a000081 d) . a027750_row
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055
    spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)];
    # a much more efficient method for computing the result with Maple. It uses two procedures:
    a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc:
    a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
    # even more efficient, uses the Euler transform:
    with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
    (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
    ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • Maxima
    g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s);
    r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1);
    Co(n,k):=if k=1  then g(n)  else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k);
    makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
    
  • PARI
    {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
    
  • PARI
    {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    concat([0], A) \\ Joerg Arndt, Apr 17 2014
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def divisor_tuple(n): # cached unordered tuple of divisors
        return tuple(divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
  • Sage
    @CachedFunction
    def a(n):
        if n < 2: return n
        return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
    [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
    
  • Sage
    [0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
    

Formula

G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015

A000055 Number of trees with n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178
Offset: 0

Views

Author

Keywords

Comments

Also, number of unlabeled 2-gonal 2-trees with n-1 2-gons, for n>0. [Corrected by Andrei Zabolotskii, Jul 29 2025]
Main diagonal of A054924.
Left border of A157905. - Gary W. Adamson, Mar 08 2009
From Robert Munafo, Jan 24 2010: (Start)
Also counts classifications of n items that require exactly n-1 binary partitions; see Munafo link at A005646, also A171871 and A171872.
The 11 trees for n = 7 are illustrated at the Munafo web link.
Link to A171871/A171872 conjectured by Robert Munafo, then proved by Andrew Weimholt and Franklin T. Adams-Watters on Dec 29 2009. (End)
This is also "Number of tree perfect graphs on n nodes" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
For n > 0, a(n) is the number of ways to arrange n-1 unlabeled non-intersecting circles on a sphere. - Vladimir Reshetnikov, Aug 25 2016
All trees for n=1 through n=12 are depicted in Chapter 1 of the Steinbach reference. On p. 6 appear encircled two trees (with n=10) which seem inequivalent only when considered as ordered (planar) trees. Earlier instances of such possibly (in)equivalent trees could appear from n=6 on (and from n=9 on without equivalence modulo plane symmetry) but are not drawn separately there. - M. F. Hasler, Aug 29 2017

Examples

			a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o];
a(4) = 2 [o-o-o and o-o-o-o]
            |
            o
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000676 (centered trees), A000677 (bicentered trees), A027416 (trees with a centroid), A102011 (trees with a bicentroid), A034853 (refined by diameter), A238414 (refined by maximum vertex degree).
Cf. A000081 (rooted trees), A000272 (labeled trees), A000169 (labeled rooted trees), A212809 (radius of convergence).
Cf. A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A054581 (unlabeled 2-trees).
Cf. A157904, A157905, A005195 (Euler transform = forests), A095133 (multisets).
Column 0 of A335362 and A034799.
Related to A005646; see A171871 and A171872.

Programs

  • Haskell
    import Data.List (generic_index)
    import Math.OEIS (getSequenceByID)
    triangle x = (x * x + x) `div` 2
    a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2}
                in  r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..]))
                    + (1-nEO) * (triangle (r m + 1))
    -- Walt Rorie-Baety, Jun 12 2021
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G,x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    G000055 := series(1+G000081-G000081^2/2+subs(x=x^2,G000081)/2,x,31); A000055 := n->coeff(G000055,x,n); # where G000081 is g.f. for A000081 starting with n=1 term
    with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2):
    seq(a(n), n=0..50);
    # Alois P. Heinz, Aug 21 2008
    # Program to create b-file b000055.txt:
    A000081 := proc(n) option remember; local d, j;
    if n <= 1 then n else
        add(add(d*procname(d),d=numtheory[divisors](j))*procname(n-j),j=1..n-1)/(n-1);
    fi end:
    A000055 := proc(nmax) local a81, n, t, a, j, i ;
    a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ;
    for n from 0 to nmax do
        if n = 0 then
            t := 1+op(n+1, a81) ;
        else
            t := op(n+1, a81) ;
        fi;
        if type(n, even) then
            t := t-op(1+n/2, a81)^2/2 ;
            t := t+op(1+n/2, a81)/2 ;
        fi;
        for j from 0 to (n-1)/2 do
            t := t-op(j+1, a81)*op(n-j+1, a81) ;
        od:
        a := [op(a), t] ;
    od:
    a end:
    L := A000055(1000) ;
    #  R. J. Mathar, Mar 06 2009
  • Mathematica
    s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *)
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) )
    \\ Joerg Arndt, Jul 10 2014
    
  • Python
    # uses function from A000081
    def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1,n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
  • SageMath
    [len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
    

Formula

G.f.: A(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + ... is the g.f. for A000081.
a(n) ~ A086308 * A051491^n * n^(-5/2). - Vaclav Kotesovec, Jan 04 2013
a(n) = A000081(n) - A217420(n+1), n > 0. - R. J. Mathar, Sep 19 2016
a(n) = A000676(n) + A000677(n). - R. J. Mathar, Aug 13 2018
a(n) = A000081(n) - (Sum_{1<=i<=j, i+j=n} A000081(i)*A000081(j)) + (1-(-1)^(n-1)) * binomial(A000081(n/2)+1,2) / 2 [Li, equation 4.2]. - Walt Rorie-Baety, Jul 05 2021

A005195 Number of forests with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, 20514, 49905, 122963, 307199, 775529, 1977878, 5086638, 13184156, 34402932, 90328674, 238474986, 632775648, 1686705630, 4514955632, 12132227370, 32717113805, 88519867048, 240235675303
Offset: 0

Views

Author

Keywords

Comments

Same as "Number of forests with n nodes that are perfect graphs" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
Number of unlabeled acyclic graphs on n vertices. The labeled version is A001858. The covering case is A144958, connected A000055. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 10 forests:
  {}  {}  {}    {}       {}          {}
          {12}  {12}     {12}        {12}
                {13,23}  {12,34}     {12,34}
                         {13,23}     {13,23}
                         {13,24,34}  {12,35,45}
                         {14,24,34}  {13,24,34}
                                     {14,24,34}
                                     {13,24,35,45}
                                     {14,25,35,45}
                                     {15,25,35,45}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095133 (by number of trees), A136605 (by number of edges).
A diagonal of A144215.
The connected case is A000055.
The labeled version is A001858.
The covering case is A144958, labeled A105784.
For triangles instead of cycles we have A006785, covering A372169.
Unique cycle: A236570 (labeled A372193), covering A372191 (labeled A372195).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]];
    b[n_] := b[n] = If[n <= 1, n, Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
    a55[n_] := a55[n] = If[n == 0, 1, b[n] - (Sum[ b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; A000055 = Table[ a55[n], {n, 1, 31}]; EulerTransform[ A000055 ] (* Jean-François Alcover, Mar 15 2012 *)

Formula

Euler transform of A000055: Product_{n>0} (1-x^n)^(-A000055(n)). a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*A000055(d). - Vladeta Jovovic, Sep 05 2002
G.f.: exp(sum_{k>0} B(x^k)/k ), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = 1.023158422... . - Vaclav Kotesovec, Nov 16 2014
First differences are A144958. - Gus Wiseman, Apr 29 2024

Extensions

More terms from Vladeta Jovovic, Sep 05 2002

A001372 Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0

Views

Author

Keywords

Examples

			The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
		

References

  • F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
    a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
    max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    F=1/prod(n=1,N, 1 - H(x^n));
    Vec(F)
    \\ Joerg Arndt, Jul 10 2014

Formula

Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015

Extensions

More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024

A087803 Number of unlabeled rooted trees with at most n nodes.

Original entry on oeis.org

1, 2, 4, 8, 17, 37, 85, 200, 486, 1205, 3047, 7813, 20299, 53272, 141083, 376464, 1011311, 2732470, 7421146, 20247374, 55469206, 152524387, 420807242, 1164532226, 3231706871, 8991343381, 25075077710, 70082143979, 196268698287, 550695545884, 1547867058882
Offset: 1

Views

Author

Hugo Pfoertner, Oct 12 2003

Keywords

Comments

Number of equations (order conditions) that must be satisfied to achieve order n in the construction of a Runge-Kutta method for the numerical solution of an ordinary differential equation. - Hugo Pfoertner, Oct 12 2003

References

  • Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester
  • See link for more references.

Crossrefs

a(n) = Sum_(k=1..n) A000081(k).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 21 2012
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
    Needs["NumericalDifferentialEquationAnalysis`"]
    Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* Peter Luschny, Aug 18 2016 *)
  • PARI
    a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k));
    a(n) = sum(k=1, n, a000081(k)) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    def A087803_list(len):
        a, t = [1], [0,1]
        for n in (1..len-1):
            S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)]
            t.append(sum(S)//n)
            a.append(a[-1]+t[-1])
        return a
    A087803_list(20) # Peter Luschny, Aug 18 2016

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - Vladimir Reshetnikov, Aug 12 2016

Extensions

Corrected and extended by Alois P. Heinz, Aug 21 2012
Renamed (old name is in comments) by Vladimir Reshetnikov, Aug 23 2016

A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.

Original entry on oeis.org

4, 3, 9, 9, 2, 4, 0, 1, 2, 5, 7, 1, 0, 2, 5, 3, 0, 4, 0, 4, 0, 9, 0, 3, 3, 9, 1, 4, 3, 4, 5, 4, 4, 7, 6, 4, 7, 9, 8, 0, 8, 5, 4, 0, 7, 9, 4, 0, 1, 1, 9, 8, 5, 7, 6, 5, 3, 4, 9, 3, 5, 4, 5, 0, 2, 2, 6, 3, 5, 4, 0, 0, 4, 2, 0, 4, 7, 6, 4, 6, 0, 5, 3, 7, 9, 8, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2013

Keywords

Comments

A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)

Examples

			0.43992401257102530404090339143454476479808540794...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.

Crossrefs

Programs

  • Mathematica
    digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

A027852 Number of connected functions on n points with a loop of length 2.

Original entry on oeis.org

0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
Offset: 1

Views

Author

Christian G. Bower, Dec 14 1997

Keywords

Comments

Number of unordered pairs of rooted trees with a total of n nodes.
Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.
Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012
Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014
Number of unicyclic graphs of n nodes with a cycle length of two (in other words, a double edge). - Washington Bomfim, Dec 02 2020

Crossrefs

Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50);  # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
    # second, re-usable version
    A027852 := proc(N::integer)
        local dh, Nprime;
        dh := 0 ;
        for Nprime from 0 to N do
            dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
        end do:
        if type(N,'even') then
            dh := dh+A000081(N/2) ;
        end if;
        dh/2 ;
    end proc: # R. J. Mathar, Mar 06 2017
  • Mathematica
    Needs["Combinatorica`"];nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
    a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
  • PARI
    seq(max_n)= { my(V = f = vector(max_n), i=1,s); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
    if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
    \\ Washington Bomfim, Jul 06 2012 and Dec 01 2020

Formula

G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.
a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014
2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020

Extensions

Edited by Christian G. Bower, Feb 12 2002

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A000107 Number of rooted trees with n nodes and a single labeled node; pointed rooted trees; vertebrates.

Original entry on oeis.org

0, 1, 2, 5, 13, 35, 95, 262, 727, 2033, 5714, 16136, 45733, 130046, 370803, 1059838, 3035591, 8710736, 25036934, 72069134, 207727501, 599461094, 1731818878, 5008149658, 14496034714, 41993925955, 121747732406, 353221737526, 1025471857282, 2978995353959, 8658997820084
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 61, 62 (2.1.8-2.1.10).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A339067.
INVERT transform of A000081.
Column k=1 of A008295.

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1) /(n-1)) end: a:= proc(n) option remember; b(n) +add(a(n-i) *b(i), i=1..n-1) end: seq(a(n), n=0..26); # Alois P. Heinz, Jun 02 2009
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1); a[n_] := a[n] = b[n] + Sum[ a[n-i]*b[i], {i, 1, n-1}]; Table[ a[n], {n, 0, 26}](* Jean-François Alcover, Mar 07 2012, after Alois P. Heinz *)

Formula

G.f.: A000081(x)/(1-A000081(x)), where A000081(x) is the g.f. of A000081 [Harary-Robinson]. - R. J. Mathar, Sep 16 2015
a(n) ~ A340310 * A051491^n / sqrt(n). - Vaclav Kotesovec, Jan 04 2021

Extensions

Better description from Christian G. Bower, Apr 15 1998

A000106 2nd power of rooted tree enumerator; number of linear forests of 2 rooted trees.

Original entry on oeis.org

1, 2, 5, 12, 30, 74, 188, 478, 1235, 3214, 8450, 22370, 59676, 160140, 432237, 1172436, 3194870, 8741442, 24007045, 66154654, 182864692, 506909562, 1408854940, 3925075510, 10959698606, 30665337738, 85967279447, 241433975446, 679192039401, 1913681367936, 5399924120339
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column d=1 of A335362.
Column 2 of A339067.
Cf. A000081, A000242, A000300, A000343, A000395, A027852 (forests of 2 rooted trees).

Programs

  • Haskell
    a000106 n = a000106_list !! (n-2)
    a000106_list = drop 2 $ conv a000081_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 17 2013
  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-1)^2, x=0, n+1), x,n): seq(a(n), n=2..35); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    <Jean-François Alcover, Nov 02 2011 *)
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-1]^2, {x, 0, n}]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Dec 01 2016, after Alois P. Heinz *)

Formula

Self-convolution of rooted trees A000081.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.87984802514205060808180678... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = 2 * A187770. - Vladimir Reshetnikov, Aug 13 2016

Extensions

More terms from Christian G. Bower, Nov 15 1999
Showing 1-10 of 67 results. Next