cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 693 results. Next

A051491 Decimal expansion of Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/A000081(n).

Original entry on oeis.org

2, 9, 5, 5, 7, 6, 5, 2, 8, 5, 6, 5, 1, 9, 9, 4, 9, 7, 4, 7, 1, 4, 8, 1, 7, 5, 2, 4, 1, 2, 3, 1, 9, 4, 5, 8, 8, 3, 7, 5, 4, 9, 2, 3, 0, 4, 6, 6, 3, 5, 9, 6, 5, 9, 5, 3, 5, 0, 4, 7, 2, 4, 7, 8, 9, 0, 5, 9, 6, 4, 7, 3, 3, 1, 3, 9, 5, 7, 4, 9, 5, 1, 0, 8, 6, 6, 6, 8, 2, 8, 3, 6, 7, 6, 5, 8, 1, 3, 5, 2, 5, 3
Offset: 1

Views

Author

Keywords

Comments

A000055(n) ~ A086308 * A051491^n * n^(-5/2), A000081(n) ~ A187770 * A051491^n * n^(-3/2). - Vaclav Kotesovec, Jan 04 2013
Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 481) has a wrong value of this constant (2.9955765856). - Vaclav Kotesovec, Jan 04 2013

Examples

			2.95576528565199497471481752412319458837549230466359659535...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.

Crossrefs

Programs

  • Mathematica
    digits = 99; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1+Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; RealDigits[alpha, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

A358378 Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 57, 59, 61, 63, 64, 65, 73, 81, 85, 101, 105, 107, 113, 117, 121, 123, 125, 127, 128, 129, 137, 145, 165, 169, 171, 193, 201, 209, 213, 229, 233, 235, 241, 245, 249, 251
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

The ordering of finitary multisets is first by length and then lexicographically. This is also the ordering used for Mathematica expressions.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered rooted trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: (o(o))
   8: (ooo)
   9: ((oo))
  11: ((o)(o))
  13: (o((o)))
  15: (oo(o))
  16: (oooo)
  17: ((((o))))
  21: ((o)((o)))
		

Crossrefs

These trees are counted by A000081.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[1000],FreeQ[srt[#],[_]?(!OrderedQ[#]&)]&]

A051573 INVERTi transform of A000081 = [1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486,...].

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 16, 41, 98, 250, 631, 1646, 4285, 11338, 30135, 80791, 217673, 590010, 1606188, 4392219, 12055393, 33206321, 91752211, 254261363, 706465999, 1967743066, 5493195530, 15367129299, 43073007846, 120949992543, 340206026166, 958444631917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; local i; `if`(n<0, -1,
          -add(a(n-i) *b(i+1), i=1..n+1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 17 2013
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := a[n] = If[n < 0, -1, -Sum[a[n-i]*b[i+1], {i, 1, n+1}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148175241..., c = A187770 = 0.4399240125710253040409033914... . - Vaclav Kotesovec, Sep 06 2014

A216349 Triangle T(n,k) in which n-th row lists the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

1, 2, 12, 9, 156, 100, 80, 56, 3160, 1880, 1180, 1420, 950, 1360, 890, 660, 480, 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, 14988, 10848, 34974, 21474, 13314, 15114, 10974, 13014, 8874, 6534, 5094, 3218628, 1806476, 1021552, 588756, 1189132
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Comments

The ordering of the functions is the same as in A215703 and is defined by the algorithm below.

Examples

			For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56.
Triangle T(n,k) begins:
:     1;
:     2;
:    12,     9;
:   156,   100,    80,    56;
:  3160,  1880,  1180,  1420,   950,  1360,   890,   660,   480;
: 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, ...
		

Crossrefs

First column gives: A216351.
Last elements of rows give: A033917.
A version with sorted row elements is: A216350.
Rows sums give: A216281.

Programs

  • Maple
    with(combinat):
    F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
         `if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
          w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
        end:
    T:= n-> map(f-> n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), F(n))[]:
    seq(T(n), n=1..7);

A216350 Triangle T(n,k) in which n-th row lists in increasing order the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

1, 2, 9, 12, 56, 80, 100, 156, 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160, 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, 20268, 21474, 22008, 24042, 29682, 31968, 34974, 35382, 50496, 87990, 65534, 78134, 102494, 131684, 141974
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Examples

			For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => 4th row = [56, 80, 100, 156].
Triangle T(n,k) begins:
:    1;
:    2;
:    9,   12;
:   56,   80,  100,   156;
:  480,  660,  890,   950,  1180,  1360,  1420,  1880,  3160;
: 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, ...
		

Crossrefs

First column gives: A033917.
Last elements of rows give: A216351.
A version with different ordering of row elements is: A216349.
Rows sums give: A216281.

Programs

  • Maple
    with(combinat):
    F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
         `if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
          w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
        end:
    T:= n-> sort(map(f-> n!*coeff(series(subs(x=x+1, f)
                     , x, n+1), x, n), F(n)))[]:
    seq(T(n), n=1..7);

A216648 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.

Examples

			856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
12;
52,     56;
212,   216,  232,  240;
852,   856,  872,  880,  920,  936,  944,  976,  992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100,       111000;
11010100,     11011000,     11101000,     11110000;
1101010100,   1101011000,   1101101000,   1101110000,   1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
		

Crossrefs

First column gives: A080675.
Last elements of rows give: A020522.
Row lengths are: A000081.
Subsequence of A057547, A081292.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
          while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n))[] end:
    seq(T(n), n=1..7);

Formula

T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.

A051420 Numbers k such that A000081(k) is prime.

Original entry on oeis.org

3, 10, 15, 343, 387, 1087, 2981, 96761
Offset: 1

Views

Author

Keywords

Comments

A000081(2981) = O(10^1400) is only a probably prime. No more terms < 6000.
No more terms < 40000. - Vaclav Kotesovec, Jul 07 2020
A000081(96761) is a probable prime. No other terms < 100000. - Mathieu Gouttenoire, Oct 08 2021

Crossrefs

Extensions

a(8) from Mathieu Gouttenoire, Oct 08 2021

A100034 Bisection of A000081 (even part).

Original entry on oeis.org

0, 1, 4, 20, 115, 719, 4766, 32973, 235381, 1721159, 12826228, 97055181, 743724984, 5759636510, 45007066269, 354426847597, 2809934352700, 22409533673568, 179655930440464, 1447023384581029, 11703780079612453, 95020085893954917, 774088023431472074
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 12 2006

A280788 Convolution of A000081 and A027852, shifted by 3 leading zeros.

Original entry on oeis.org

1, 2, 6, 15, 41, 106, 284, 750, 2010, 5382, 14523, 39290, 106854, 291552, 798675, 2194828, 6051153, 16730373, 46383002, 128910484, 359115067, 1002575810, 2804667061, 7860780578, 22070885735, 62071872704, 174842835886, 493217417610
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Crossrefs

Programs

  • Maple
    A280788 := proc(N::integer)
        if N = 0 then
            1;
        else
            add(A000081(Nprime+1)*A027852(N-Nprime+2),Nprime=0..N) ;
        end if;
    end proc:
    seq(A280788(n),n=0..30) ; # R. J. Mathar, Mar 06 2017
  • Mathematica
    a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #*a81[#]&], {j, n - 1}]/(n - 1)];
    A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np] * a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
    A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]];
    Table[A280788[n], {n, 0, 27}] (* Jean-François Alcover, Nov 23 2017, from Maple *)

A100427 Bisection of A000081 (odd part).

Original entry on oeis.org

1, 2, 9, 48, 286, 1842, 12486, 87811, 634847, 4688676, 35221832, 268282855, 2067174645, 16083734329, 126186554308, 997171512998, 7929819784355, 63411730258053, 509588049810620, 4113254119923150, 33333125878283632, 271097737169671824, 2212039245722726118
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(2*n+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 12 2006
Showing 1-10 of 693 results. Next