A299039
Number of rooted trees with 2n nodes where each node has at most n children.
Original entry on oeis.org
1, 1, 3, 17, 106, 693, 4690, 32754, 234746, 1719325, 12820920, 97039824, 743680508, 5759507657, 45006692668, 354425763797, 2809931206626, 22409524536076, 179655903886571, 1447023307374888, 11703779855021636, 95020085240320710, 774088021528328920
Offset: 0
a(2) = 3:
o o o
| | / \
o o o o
| / \ |
o o o o
|
o
-
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
a:= n-> `if`(n=0, 1, b(2*n-1$2, n$2)):
seq(a(n), n=0..25);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
a[n_] := If[n == 0, 1, b[2n - 1, 2n - 1, n, n]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, from Maple *)
A299098
Number of rooted identity trees with 2n nodes.
Original entry on oeis.org
0, 1, 2, 6, 25, 113, 548, 2770, 14426, 76851, 416848, 2294224, 12780394, 71924647, 408310668, 2335443077, 13446130438, 77863375126, 453203435319, 2649957419351, 15558520126830, 91687179000949, 542139459641933, 3215484006733932, 19125017153077911
Offset: 0
a(3) = 6:
o o o o o o
| | | / \ / \ / \
o o o o o o o o o
| | / \ | | | / \
o o o o o o o o o
| / \ | | | |
o o o o o o o
| | | |
o o o o
|
o
-
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
end:
a:= n-> b(2*n):
seq(a(n), n=0..30);
-
b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)];
a[n_] := b[2*n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)
-
from sympy import divisors
from sympy.core.cache import cacheit
@cacheit
def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1)
def a(n): return b(2*n)
print([a(n) for n in range(31)]) # Indranil Ghosh, Mar 02 2018, after Maple program
Original entry on oeis.org
1, 2, 9, 48, 286, 1842, 12486, 87811, 634847, 4688676, 35221832, 268282855, 2067174645, 16083734329, 126186554308, 997171512998, 7929819784355, 63411730258053, 509588049810620, 4113254119923150, 33333125878283632, 271097737169671824, 2212039245722726118
Offset: 0
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<2, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> b(2*n+1):
seq(a(n), n=0..50); # Alois P. Heinz, May 16 2013
-
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
Showing 1-3 of 3 results.