cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100034 Bisection of A000081 (even part).

Original entry on oeis.org

0, 1, 4, 20, 115, 719, 4766, 32973, 235381, 1721159, 12826228, 97055181, 743724984, 5759636510, 45007066269, 354426847597, 2809934352700, 22409533673568, 179655930440464, 1447023384581029, 11703780079612453, 95020085893954917, 774088023431472074
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 12 2006

A299113 Number of rooted identity trees with 2n+1 nodes.

Original entry on oeis.org

1, 1, 3, 12, 52, 247, 1226, 6299, 33209, 178618, 976296, 5407384, 30283120, 171196956, 975662480, 5599508648, 32334837886, 187737500013, 1095295264857, 6417886638389, 37752602033079, 222861754454841, 1319834477009635, 7839314017612273, 46688045740233741
Offset: 0

Views

Author

Alois P. Heinz, Feb 02 2018

Keywords

Examples

			a(2) = 3:
   o     o       o
   |     |      / \
   o     o     o   o
   |    / \    |
   o   o   o   o
   |   |       |
   o   o       o
   |
   o
		

Crossrefs

Bisection of A004111 (odd part).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> b(2*n+1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, Sum[b[n - k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)];
    a[n_] := b[2*n + 1];
    Array[a, 30, 0] (* Jean-François Alcover, May 30 2019, from Maple *)
  • Python
    from sympy import divisors
    from sympy.core.cache import cacheit
    @cacheit
    def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1)
    def a(n): return b(2*n+1)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Mar 02 2018

Formula

a(n) = A004111(2n+1).
Showing 1-2 of 2 results.