A299098 Number of rooted identity trees with 2n nodes.
0, 1, 2, 6, 25, 113, 548, 2770, 14426, 76851, 416848, 2294224, 12780394, 71924647, 408310668, 2335443077, 13446130438, 77863375126, 453203435319, 2649957419351, 15558520126830, 91687179000949, 542139459641933, 3215484006733932, 19125017153077911
Offset: 0
Keywords
Examples
a(3) = 6: o o o o o o | | | / \ / \ / \ o o o o o o o o o | | / \ | | | / \ o o o o o o o o o | / \ | | | | o o o o o o o | | | | o o o o | o
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1253
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add( b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1)) end: a:= n-> b(2*n): seq(a(n), n=0..30);
-
Mathematica
b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := b[2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)
-
Python
from sympy import divisors from sympy.core.cache import cacheit @cacheit def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1) def a(n): return b(2*n) print([a(n) for n in range(31)]) # Indranil Ghosh, Mar 02 2018, after Maple program
Formula
a(n) = A004111(2*n).