cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299098 Number of rooted identity trees with 2n nodes.

Original entry on oeis.org

0, 1, 2, 6, 25, 113, 548, 2770, 14426, 76851, 416848, 2294224, 12780394, 71924647, 408310668, 2335443077, 13446130438, 77863375126, 453203435319, 2649957419351, 15558520126830, 91687179000949, 542139459641933, 3215484006733932, 19125017153077911
Offset: 0

Views

Author

Alois P. Heinz, Feb 02 2018

Keywords

Examples

			a(3) = 6:
   o     o       o       o       o         o
   |     |       |      / \     / \       / \
   o     o       o     o   o   o   o     o   o
   |     |      / \    |       |   |    / \
   o     o     o   o   o       o   o   o   o
   |    / \    |       |       |       |
   o   o   o   o       o       o       o
   |   |       |       |
   o   o       o       o
   |
   o
		

Crossrefs

Bisection of A004111 (even part).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)];
    a[n_] := b[2*n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)
  • Python
    from sympy import divisors
    from sympy.core.cache import cacheit
    @cacheit
    def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1)
    def a(n): return b(2*n)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Mar 02 2018, after Maple program

Formula

a(n) = A004111(2*n).

A100427 Bisection of A000081 (odd part).

Original entry on oeis.org

1, 2, 9, 48, 286, 1842, 12486, 87811, 634847, 4688676, 35221832, 268282855, 2067174645, 16083734329, 126186554308, 997171512998, 7929819784355, 63411730258053, 509588049810620, 4113254119923150, 33333125878283632, 271097737169671824, 2212039245722726118
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(2*n+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 12 2006
Showing 1-2 of 2 results.