A280786
Number of topologically distinct sets of n circles with one pair intersecting.
Original entry on oeis.org
1, 4, 15, 50, 162, 506, 1558, 4727, 14227, 42521, 126506, 374969, 1108476, 3269902, 9630631, 28328999, 83251569, 244471484, 717486860, 2104777227, 6172357873, 18096097750, 53044095421, 155464365080, 455601800970, 1335107222743, 3912330438784, 11464463809180, 33595343643160
Offset: 2
-
A280786 := proc(N)
if N < 2 then
0;
else
add(A280787(N,f),f=1..N-1) ;
end if;
end proc:
A280787 := proc(N,f)
option remember ;
local Npr,ct ;
if f = N then
return 0;
elif f = N-1 then
return 1;
elif f = 1 then
A280786(N-1)+A280788(N-2) ;
else
ct := 0 ;
for Npr from 1 to N-1 do
ct := ct+procname(Npr,1)*A033185(N-Npr,f-1) ;
end do:
ct ;
end if;
end proc:
seq(A280786(n),n=2..30) ; # R. J. Mathar, Mar 06 2017
-
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
A280788[n_] := If[n == 0, 1, Sum[a81[np + 1]*A027852[n - np + 2], {np, 0, n}]];
t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
b[1, 1, 1] = 1;
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
Table[A280786[n], {n, 2, 30}] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)
A339303
Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 9, 6, 6, 2, 1, 20, 16, 15, 8, 3, 1, 48, 37, 41, 22, 12, 3, 1, 115, 96, 106, 69, 38, 15, 4, 1, 286, 239, 284, 194, 124, 52, 20, 4, 1, 719, 622, 750, 564, 377, 189, 77, 24, 5, 1, 1842, 1607, 2010, 1584, 1144, 618, 292, 100, 30, 5, 1
Offset: 1
Triangle read by rows:
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
9, 6, 6, 2, 1;
20, 16, 15, 8, 3, 1;
48, 37, 41, 22, 12, 3, 1;
115, 96, 106, 69, 38, 15, 4, 1;
286, 239, 284, 194, 124, 52, 20, 4, 1;
719, 622, 750, 564, 377, 189, 77, 24, 5, 1;
...
Row sums excluding the first column are
A303833.
-
\\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2}
M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
A280787
Triangle read by rows: number of topologically distinct sets of n circles with one pair intersecting, by number of factors.
Original entry on oeis.org
1, 3, 1, 10, 4, 1, 30, 15, 4, 1, 91, 50, 16, 4, 1, 268, 162, 55, 16, 4, 1, 790, 506, 185, 56, 16, 4, 1, 2308, 1558, 594, 190, 56, 16, 4, 1, 6737, 4727, 1878, 617, 191, 56, 16, 4, 1, 19609, 14227, 5825, 1970, 622, 191, 56, 16, 4, 1
Offset: 2
Triangle begins:
1;
3, 1;
10, 4, 1;
30, 15, 4, 1;
91, 50, 16, 4, 1;
268, 162, 55, 16, 4, 1;
790, 506, 185, 56, 16, 4, 1;
2308, 1558, 594, 190, 56, 16, 4, 1;
...
-
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]];
t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
b[1, 1, 1] = 1;
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
Table[A280787[n, f], {n, 2, 11}, {f, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)
Showing 1-3 of 3 results.
Comments