cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261070 Irregular triangle read by rows: T(n,k) is the number of arrangements of n circles with 2k intersections (using the same rules as A250001).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 2, 4, 9, 15, 15, 31, 24, 35, 44, 20, 50
Offset: 0

Views

Author

Benoit Jubin, Aug 08 2015

Keywords

Comments

Length of n-th row: 1 + (n-1)n/2 (for a configuration for T(n,(n-1)n/2), consider n circles of radius 1 and centers at (k/n,0) for 1<=k<=n).
The generating function down the column k=1 is 1+z^2 *C^2(z) *[C^2(z)+C(z^2)]/ (2*[1-z*C(z)]) = 1+ z^2 +4*z^3 +15*z^4+ 50*z^5+...where C(z) = 1+z+2*z^2+4*z^3+... is the g.f. of A000081 divided by z; eq. (78) in arXiv:1603.00077. - R. J. Mathar, Mar 05 2016

Examples

			n\k 0  1  2  3  4  5  6
0   1
1   1
2   2  1
3   4  4  2  4
4   9 15 15 31 24 35 44
5  20 50  .  .  .  .  .  .  .  .  .
		

Crossrefs

Row sums give A250001.
Cf. A000081, A152947, A249752, A252158, A280786 (column k=1)

Formula

A250001(n) = Sum_{k>=0} T(n,k).
A000081(n+1) = T(n,0).

Extensions

T(4,2)..T(5,0) (6 terms) from Travis Vasquez, Nov 28 2024

A280788 Convolution of A000081 and A027852, shifted by 3 leading zeros.

Original entry on oeis.org

1, 2, 6, 15, 41, 106, 284, 750, 2010, 5382, 14523, 39290, 106854, 291552, 798675, 2194828, 6051153, 16730373, 46383002, 128910484, 359115067, 1002575810, 2804667061, 7860780578, 22070885735, 62071872704, 174842835886, 493217417610
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Crossrefs

Programs

  • Maple
    A280788 := proc(N::integer)
        if N = 0 then
            1;
        else
            add(A000081(Nprime+1)*A027852(N-Nprime+2),Nprime=0..N) ;
        end if;
    end proc:
    seq(A280788(n),n=0..30) ; # R. J. Mathar, Mar 06 2017
  • Mathematica
    a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #*a81[#]&], {j, n - 1}]/(n - 1)];
    A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np] * a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
    A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]];
    Table[A280788[n], {n, 0, 27}] (* Jean-François Alcover, Nov 23 2017, from Maple *)

A280787 Triangle read by rows: number of topologically distinct sets of n circles with one pair intersecting, by number of factors.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 30, 15, 4, 1, 91, 50, 16, 4, 1, 268, 162, 55, 16, 4, 1, 790, 506, 185, 56, 16, 4, 1, 2308, 1558, 594, 190, 56, 16, 4, 1, 6737, 4727, 1878, 617, 191, 56, 16, 4, 1, 19609, 14227, 5825, 1970, 622, 191, 56, 16, 4, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Examples

			Triangle begins:
     1;
     3,    1;
    10,    4,   1;
    30,   15,   4,   1;
    91,   50,  16,   4,  1;
   268,  162,  55,  16,  4,  1;
   790,  506, 185,  56, 16,  4, 1;
  2308, 1558, 594, 190, 56, 16, 4, 1;
...
		

Crossrefs

Row sums give A280786.

Programs

  • Mathematica
    a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
    A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
    A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]];
    t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
    b[1, 1, 1] = 1;
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
    A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
    A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
    Table[A280787[n, f], {n, 2, 11}, {f, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)
Showing 1-3 of 3 results.