cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A215703 A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below.
The list of functions f_1, f_2, ... begins:
| f_k : m : function (tree) : representation(s) : sequence |
+-----+---+------------------+--------------------------+----------+
| f_1 | 1 | x -> x | x | A019590 |
| f_2 | 2 | x -> x^x | x^x | A005727 |
| f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 |
| f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 |
| f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 |
| f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 |
| f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 |
| f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 |

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,   1,    1,    1,     1,     1,     1,     1, ...
  0,   2,    4,    2,     6,     4,     2,     2, ...
  0,   3,   12,    9,    27,    18,    15,     9, ...
  0,   8,   52,   32,   156,   100,    80,    56, ...
  0,  10,  240,  180,  1110,   650,   590,   360, ...
  0,  54, 1188,  954,  8322,  4908,  5034,  2934, ...
  0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
    f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
    A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
    Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)

A033917 Coefficients of iterated exponential function defined by y(x) = x^y(x) for e^-e < x < e^(1/e), expanded about x=1.

Original entry on oeis.org

1, 1, 2, 9, 56, 480, 5094, 65534, 984808, 16992144, 330667680, 7170714672, 171438170232, 4480972742064, 127115833240200, 3889913061111240, 127729720697035584, 4479821940873927168, 167143865005981109952, 6610411989494027218368, 276242547290322145178880
Offset: 0

Views

Author

Keywords

Comments

a(n) is the n-th derivative of x^(x^...(x^(x^x))) with n x's evaluated at x=1. - Alois P. Heinz, Oct 14 2016

Crossrefs

Row sums of A277536.
Main diagonal of A277537.

Programs

  • Maple
    a:= n-> add(Stirling1(n, k)*(k+1)^(k-1), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 31 2012
  • Mathematica
    mx = 20; Table[ i! SeriesCoefficient[ InverseSeries[ Series[ y^(1/y), {y, 1, mx}]], i], {i, 0, n}] (* modified by Robert G. Wilson v, Feb 03 2013 *)
    CoefficientList[Series[-LambertW[-Log[1+x]]/Log[1+x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)
    a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*(A+x*O(x^n))^k)*x^m/m!)); n!*polcoeff(A, n)
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 09 2013

Formula

E.g.f.: -LambertW(-log(1+x))/log(1+x). a(n) = Sum_{k=0..n} Stirling1(n, k)*(k+1)^(k-1). - Vladeta Jovovic, Nov 12 2003
a(n) ~ n^(n-1) / ( exp(n -3/2 + exp(-1)/2) * (exp(exp(-1))-1)^(n-1/2) ). - Vaclav Kotesovec, Nov 27 2012
E.g.f.: A(x) satisfies A(x) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} Stirling1(n,k) * A(x)^k. - Paul D. Hanna, Mar 09 2013
a(n) = n! * [x^n] (x+1)^^n. - Alois P. Heinz, Oct 19 2016

A216350 Triangle T(n,k) in which n-th row lists in increasing order the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

1, 2, 9, 12, 56, 80, 100, 156, 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160, 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, 20268, 21474, 22008, 24042, 29682, 31968, 34974, 35382, 50496, 87990, 65534, 78134, 102494, 131684, 141974
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Examples

			For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => 4th row = [56, 80, 100, 156].
Triangle T(n,k) begins:
:    1;
:    2;
:    9,   12;
:   56,   80,  100,   156;
:  480,  660,  890,   950,  1180,  1360,  1420,  1880,  3160;
: 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, ...
		

Crossrefs

First column gives: A033917.
Last elements of rows give: A216351.
A version with different ordering of row elements is: A216349.
Rows sums give: A216281.

Programs

  • Maple
    with(combinat):
    F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
         `if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
          w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
        end:
    T:= n-> sort(map(f-> n!*coeff(series(subs(x=x+1, f)
                     , x, n+1), x, n), F(n)))[]:
    seq(T(n), n=1..7);

A216648 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.

Examples

			856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
12;
52,     56;
212,   216,  232,  240;
852,   856,  872,  880,  920,  936,  944,  976,  992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100,       111000;
11010100,     11011000,     11101000,     11110000;
1101010100,   1101011000,   1101101000,   1101110000,   1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
		

Crossrefs

First column gives: A080675.
Last elements of rows give: A020522.
Row lengths are: A000081.
Subsequence of A057547, A081292.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
          while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n))[] end:
    seq(T(n), n=1..7);

Formula

T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.

A216351 n-th derivative of x^(x^(n-1)) at x=1.

Original entry on oeis.org

1, 1, 2, 12, 156, 3160, 87990, 3218628, 150271520, 8710554816, 610951827960, 50770346742720, 4919197411068072, 548907184341479808, 69823173142960626480, 10034787531626188107840, 1616352219917942008147200, 289720383156740969786941440
Offset: 0

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Comments

x^(x^(n-1)) = (((x^x)^x)^ ... )^x with n x's.

Crossrefs

Programs

  • Maple
    a:= n-> n! *coeff(series( (x+1)^((x+1)^(n-1)) , x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

a(n) = n! * [x^n] (x+1)^((x+1)^(n-1)).
a(n) = A216349(n,1) = A216350(n,A000081(n)) for n>0.

A216281 Sum of n-th derivatives at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways.

Original entry on oeis.org

1, 2, 21, 392, 11980, 471966, 24655820, 1548264752, 118039822488, 10482116888640, 1076582148812808, 125439212178037728, 16473767684928836256, 2410412979008498588208, 390793360308270931979400, 69716064087131957637475968
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Examples

			For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => a(n) = 156+100+80+56 = 392.
		

Crossrefs

Row sums of A216349, A216350.

Programs

  • Maple
    F:= proc(n) F(n):= `if`(n=1, [x], map(h->x^h, g(n-1, n-1))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(seq(
           mul(F(i)[w[t]-t+1], t=1..j)*v, w=combinat[choose](
           [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    a:= n-> add(n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), f=F(n)):
    seq(a(n), n=1..12);
  • Mathematica
    F[n_] := If[n == 1, {x}, x^#& /@ g[n - 1, n - 1]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@Table[Table[Table[ Product[F[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {w, Subsets[Range[Length[ F[i]] + j - 1], {j}]}], {v, g[n - i*j, i - 1]}], {j, 0, n/i}]];
    a[n_] := a[n] = Sum[n!*SeriesCoefficient[f /. x -> x + 1, {x, 0, n}], {f, F[n]}];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)

Extensions

a(16) from Alois P. Heinz, May 09 2016

A216649 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n+1).

Original entry on oeis.org

2, 10, 12, 42, 44, 52, 56, 170, 172, 180, 184, 204, 212, 216, 232, 240, 682, 684, 692, 696, 716, 724, 728, 744, 752, 820, 824, 852, 856, 872, 880, 920, 936, 944, 976, 992, 2730, 2732, 2740, 2744, 2764, 2772, 2776, 2792, 2800, 2868, 2872, 2900, 2904, 2920, 2928
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n+1 nodes. The tree has a root node. Each matching pair (1,0) in the binary string representation encodes an additional node, the totally balanced substrings encode lists of subtrees.

Examples

			172 is element of row 4, the binary string representation (with totally balanced substrings enclosed in parentheses) is (10)(10)(1(10)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
10,     12;
42,     44,   52,   56;
170,   172,  180,  184,  204,  212,  216,  232,  240;
682,   684,  692,  696,  716,  724,  728,  744,  752,  820,  824, ...
2730, 2732, 2740, 2744, 2764, 2772, 2776, 2792, 2800, 2868, 2872, ...
Triangle T(n,k) in binary:
10;
1010,       1100;
101010,     101100,     110100,     111000;
10101010,   10101100,   10110100,   10111000,   11001100,   11010100, ...
1010101010, 1010101100, 1010110100, 1010111000, 1011001100, 1011010100, ...
		

Crossrefs

First column gives: A020988.
Last elements of rows give: A020522.
Row lengths are: A000081(n+1).
Subsequence of A014486, A031443.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n/10, 0; for i from 0
          while h>1 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n+1))[] end:
    seq(T(n), n=1..6);

Formula

T(n,k) = A216648(n+1,k)/2 - 2^(2*n).
Showing 1-7 of 7 results.